【題目】已知直線的參數(shù)方程為(為參數(shù),),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)若直線被圓截得的弦長為時,求的值.
(2)直線的參數(shù)方程為(為參數(shù)),若,垂足為,求點(diǎn)的極坐標(biāo).
【答案】(1)(2).
【解析】
(1)把直線的參數(shù)方程通過消參過程,化為直角坐標(biāo)方程;利用公式把圓的極坐標(biāo)方程化為直角坐標(biāo)方程,利用弦心距、弦長和圓關(guān)徑的關(guān)系,建立等式,求出的值。
(2)把直線的參數(shù)方程通過消參過程,化為直角坐標(biāo)方程,根據(jù)這一條件,可以確定,兩直線方程聯(lián)立,求出點(diǎn)的坐標(biāo),最后化成極坐標(biāo)。
(1)由得(,為參數(shù))得.
∵,,∴由得,
,即圓心為,,
∴到直線距離為,
又弦長為,故,
因?yàn)?/span>,所以解得.
(2)由的方程可得,
又得:,
解,,,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線x2=4y的焦點(diǎn)F和點(diǎn)A(-1,8),點(diǎn)P為拋物線上一點(diǎn),則|PA|+|PF|的最小值為( )
A. 16 B. 6 C. 12 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有兩個車間生產(chǎn)同一種產(chǎn)品,第一車間有工人200人,第二車間有工人400人,為比較兩個車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,并對他們中每位工人生產(chǎn)完成一件產(chǎn)品的時間(單位:min)分別進(jìn)行統(tǒng)計(jì),得到下列統(tǒng)計(jì)圖表(按照[55,65),[65,75),[75,85),[85,95]分組).
分組 | 頻數(shù) |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合計(jì) | 20 |
第一車間樣本頻數(shù)分布表
(Ⅰ)分別估計(jì)兩個車間工人中,生產(chǎn)一件產(chǎn)品時間小于75min的人數(shù);
(Ⅱ)分別估計(jì)兩車間工人生產(chǎn)時間的平均值,并推測哪個車間工人的生產(chǎn)效率更高?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
(Ⅲ)從第一車間被統(tǒng)計(jì)的生產(chǎn)時間小于75min的工人中,隨機(jī)抽取3人,記抽取的生產(chǎn)時間小于65min的工人人數(shù)為隨機(jī)變量X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,,給出下列命題:
①當(dāng)時, ②函數(shù)有3個零點(diǎn)
③的解集為 ④,都有
其中正確命題的個數(shù)是( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們要計(jì)算由拋物線,x軸以及直線所圍成的區(qū)域的面積S,可用x軸上的分點(diǎn)、、、…、、1將區(qū)間分成n個小區(qū)間,在每個小區(qū)間上做一個小矩形,使矩形的左端點(diǎn)在拋物線上,這些矩形的高分別為、、、…、,矩形的底邊長都是,設(shè)所有這些矩形面積的總和為,為求S,只須令分割的份數(shù)n無限增大,就無限趨近于S,即.
(1)求數(shù)列的通項(xiàng)公式,并求出S;
(2)利用相同的思想方法,探求由函數(shù)的圖象,x軸以及直線和所圍成的區(qū)域的面積T.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O經(jīng)過橢圓C:=1(a>b>0)的兩個焦點(diǎn)以及兩個頂點(diǎn),且點(diǎn)(b,)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且|MN|=,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邊長為的等邊三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,這個定值等于;將這個結(jié)論推廣到空間是:棱長為的正四面體內(nèi)任一點(diǎn)到各面距離之和等于________________.(具體數(shù)值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且an2+4an﹣8Sn=0,則an=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com