2.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x-4.
(1)當(dāng)x<0,求f(x)的解析式;
(2)解方程:f(x)=0.

分析 (1)當(dāng)x<0時(shí),則-x>0,f(x)=-f(-x)=-(-2x-4)=2x+4,求解即可.
(2)路函數(shù)的解析式,即可得出結(jié)論.

解答 解:(1)∵函數(shù)y=f(x)是定義在R上的奇函數(shù),
∴f(-x)=-f(x),
∵當(dāng)x>0時(shí),f(x)=2x-4,
∴當(dāng)x<0時(shí),則-x>0,
f(x)=-f(-x)=-(-2x-4)=2x+4,(x<0)
(2)x>0時(shí),f(x)=2x-4=0,∴x=2;
x<0時(shí),f(x)=2x+4=0,∴x=-2;
又f(0)=0,
∴方程:f(x)=0的解是0,2,-2.

點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì),運(yùn)用求解函數(shù)解析式,屬于容易題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知f(x)=m(x-2m)(x+m+1),g(x)=2x-1,若?x∈R,f(x)<0或g(x)<0,則實(shí)數(shù)m的取值范圍為(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\frac{{(x+1)}^{2}{+x}^{3}}{{x}^{2}+1}$,則f(log25)+f(log2$\frac{1}{5}$)的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x),g(x)均為R上的增函數(shù),φ(x)≠0且為R上的減函數(shù),則下列命題中正確的是(  )
A.f(x)+g(x)及f(x)•g(x)均為增函數(shù)
B.f(x)-g(x)為增函數(shù),f(x)•g(x)的增減性無法確定
C.f(x)+g(x)及$\frac{f(x)}{φ(x)}$均為增函數(shù)
D.f2(x)為增函數(shù),$\frac{1}{φ(x)}$為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.邊長為1的正方形ABCD中,邊AB,BC上分別有一動(dòng)點(diǎn)Q,R.且|BQ|=|CR|,建立適當(dāng)?shù)淖鴺?biāo)系,求直線AR與DQ的交點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=2x和g(x)=x3,在同一坐標(biāo)系下作出它們的圖象,結(jié)合圖象比較f(8),g(8),f(2013),g(2013)的大小為f(8)<g(8),f(2013)>g(2013).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x,恒有f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2
(1)求證:函數(shù)f(x)恒有f(x+4)=f(x)成立;
(2)x∈[2,4],求f(x)的解析式;
(3)計(jì)算f(0)+f(1)+f(2)+…+f(2015).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)y=$\sqrt{\frac{2-x}{2+x}}$+lg(-x2+4x-3)的定義域?yàn)镸.
(1)求M;
(2)當(dāng)x∈M使,求函數(shù)f(x)=4x-a•2x+2(a>1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知正方體ABCD-A1B1C1D1的棱長是3,線段MN的長是2,M在DD1上運(yùn)動(dòng),N在平面ABCD上運(yùn)動(dòng),則M,N的中點(diǎn)P形成的曲面與ABCD面,DCC1D1面,ADD1A1面所圍成的幾何體的體積是( 。
A.$\frac{4}{3}π$B.$\frac{2}{3}π$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案