【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知.
(1)求C;
(2)若c=,△ABC的面積為,求△ABC的周長.
【答案】(1) C= (2) △ABC的周長為+
【解析】試題分析:(1)由正弦定理得到2cosCsinC=sinC,進而得到cosC=,∴C=;(2)根據(jù)第一問的已求角,可由余弦定理得到(a+b)2﹣3ab=3,根據(jù)面積公式得到ab=16,結(jié)合第一個式子得到結(jié)果。
解析:
(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0
利用正弦定理化簡得:2cosC(sinAcosB+sinBcosA)=sinC,
整理得:2cosCsin(A+B)=sinC,
即2cosCsin(π﹣(A+B))=sinC,2cosCsinC=sinC
∴cosC=,∴C=
(Ⅱ)由余弦定理得3=a2+b2﹣2ab,
∴(a+b)2﹣3ab=3,
∵S= absinC= ab=, ∴ab=16,
∴(a+b)2﹣48=3,∴a+b=,
∴△ABC的周長為+ .
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;
②設有一個回歸方程=3-5x,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程=x+必過(,);
④在一個2×2列聯(lián)表中,由計算得K2=13.079,則有99%以上的把握認為這兩個變量間有關系.
其中錯誤的個數(shù)是( )
本題可以參考獨立性檢驗臨界值表:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
A. 0 B. 1
C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某山區(qū)外圍有兩條相互垂直的直線型公路,為進一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,記兩條相互垂直的公路為l1,l2,山區(qū)邊界曲線為C,計劃修建的公路為l,如圖所示,M,N為C的兩個端點,測得點M到l1,l2的距離分別為5千米和40千米,點N到l1,l2的距離分別為20千米和2.5千米,以l2,l1所在的直線分別為x,y軸,建立平面直角坐標系xOy,假設曲線C符合函數(shù)y= (其中a,b為常數(shù))模型.
(1)求a,b的值;
(2)設公路l與曲線C相切于P點,P的橫坐標為t.
①請寫出公路l長度的函數(shù)解析式f(t),并寫出其定義域;
②當t為何值時,公路l的長度最短?求出最短長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知是直角梯形, , , , , 平面.
(Ⅰ)上是否存在點使平面,若存在,指出的位置并證明,若不存在,請說明理由;(Ⅱ)證明: ;
(Ⅲ)若,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當時,記,是否存在整數(shù),使得關于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,f(x)=2sin(x-A)cosx+sin(B+C)(x∈R),函數(shù)f(x)的圖象關于點對稱.
(1)當時,求f(x)的值域;
(2)若a=7且,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),,.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,討論函數(shù)與圖像的交點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com