【題目】如圖,四棱錐的一個(gè)側(cè)面為等邊三角形,且平面平面,四邊形是平行四邊形,,.

1)求證:

2)求二面角的余弦值.

【答案】(1)詳見解析(2)

【解析】

1)由面面垂直的性質(zhì)可得平面,即可證得2)作于點(diǎn),過(guò)點(diǎn)于點(diǎn),連接,以為坐標(biāo)原點(diǎn),以,,所在直線為軸,軸,軸建立空間直角坐標(biāo)系,利用向量法求平面法向量,利用向量夾角即可求出.

1)證明:在中,,,

.

又平面平面

平面平面,

平面,∴.

2)如圖,作于點(diǎn),

平面

過(guò)點(diǎn)于點(diǎn),連接,

為坐標(biāo)原點(diǎn),以,所在直線為軸,軸,軸建立空間直角坐標(biāo)系,如圖所示:

,,,,

,,

由(1)知平面的一個(gè)法向量為

設(shè)平面的法向量為,

,即,

,

設(shè)平面與平面所成二面角的平面角為,

.

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

對(duì)函數(shù)Φx),定義fkx)=Φxmk)+nk(其中xmk,mmk],kZm0,n0,且m、n為常數(shù))為Φx)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3

1)當(dāng)Φx)=2x時(shí)f0x)和fkx)的解析式;求證:Φx)的各階階梯函數(shù)圖象的最高點(diǎn)共線;

2)若Φx)=x2,則是否存在正整數(shù)k,使得不等式fkx)<(13kx4k23k1有解?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是菱形所在平面外一點(diǎn),,

1)求證:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校為了對(duì)教師教學(xué)水平和教師管理水平進(jìn)行評(píng)價(jià),從該校學(xué)生中選出300人進(jìn)行統(tǒng)計(jì).其中對(duì)教師教學(xué)水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的,對(duì)教師管理水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的,其中對(duì)教師教學(xué)水平和教師管理水平都給出好評(píng)的有120人.

(1)填寫教師教學(xué)水平和教師管理水平評(píng)價(jià)的列聯(lián)表:

對(duì)教師管理水平好評(píng)

對(duì)教師管理水平不滿意

合計(jì)

對(duì)教師教學(xué)水平好評(píng)

對(duì)教師教學(xué)水平不滿意

合計(jì)

請(qǐng)問(wèn)是否可以在犯錯(cuò)誤概率不超過(guò)0.001的前提下,認(rèn)為教師教學(xué)水平好評(píng)與教師管理水平好評(píng)有關(guān)?

(2)若將頻率視為概率,有4人參與了此次評(píng)價(jià),設(shè)對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)為隨機(jī)變量.

①求對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)的分布列(概率用組合數(shù)算式表示);

②求的數(shù)學(xué)期望和方差.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(.

(Ⅰ)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)設(shè),若,若函數(shù)對(duì)恒成立,求實(shí)數(shù)的取值范圍.是自然對(duì)數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為梯形,,,平面,分別是的中點(diǎn).

)求證:平面;

)若與平面所成的角為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩地相距千米,汽車從地勻速行駛到地,速度不超過(guò)千米小時(shí),已知汽車每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度的平方成正比,比例系數(shù)為,固定部分為元,

(1)把全程運(yùn)輸成本()表示為速度(千米小時(shí))的函效:并求出當(dāng)時(shí),汽車應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最;

(2)隨著汽車的折舊,運(yùn)輸成本會(huì)發(fā)生一些變化,那么當(dāng),此時(shí)汽車的速度應(yīng)調(diào)整為多大,才會(huì)使得運(yùn)輸成本最小,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)相關(guān)系數(shù)r來(lái)說(shuō),下列說(shuō)法正確的是(  ).

A.,越接近0,相關(guān)程度越大;越接近1,相關(guān)程度越小

B.,越接近1,相關(guān)程度越大;越大,相關(guān)程度越小

C.越接近1,相關(guān)程度越大;越接近0,相關(guān)程度越小

D.,越接近1,相關(guān)程度越。越大,相關(guān)程度越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年高考剛過(guò),為了解考生對(duì)全國(guó)2卷數(shù)學(xué)試卷難度的評(píng)價(jià),隨機(jī)抽取了某學(xué)校50名男考生與50名女考生,得到下面的列聯(lián)表:

非常困難

一般

男考生

20

30

女考生

40

10

(1)分別估計(jì)該學(xué)校男考生、女考生覺(jué)得全國(guó)2卷數(shù)學(xué)試卷非常困難的概率;

(2)從該學(xué)校隨機(jī)抽取3名男考生,2名女考生,求恰有4名考生覺(jué)得全國(guó)2卷數(shù)學(xué)試卷非常困難的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案