【題目】已知函數(shù)f(x)=|x﹣1|+|x+a|,其中a為實(shí)常數(shù).
(1)若函數(shù)f(x)的最小值為2,求a的值;
(2)當(dāng)x∈[0,1]時(shí),不等式|x﹣2|≥f(x)恒成立,求a的取值范圍.

【答案】
(1)解:∵f(x)=|x﹣1|+|x+a|≥|(x﹣1)﹣(x+a)|=|a+1|,

當(dāng)且僅當(dāng)(x﹣1)(x+a)≤0時(shí)取等號(hào),

∴f(x)min=|a+1|,

由|a+1|=2,解得:a=1或a=﹣3;


(2)解:當(dāng)x∈[0,1]時(shí),f(x)=﹣x+1+|x+a|,

而|x﹣2|=﹣x+2,

由|x﹣2|≥f(x)恒成立,

得﹣x+2≥﹣x+1+|x+a|,

即|x+a|≤1,解得:﹣1﹣a≤x≤1﹣a,

由題意得[0,1][﹣1﹣a,1﹣a],

,即﹣1≤a≤0


【解析】(1)求出f(x)的最小值,得到|a+1|=2,解出a的值即可;(2)問題轉(zhuǎn)化為|x+a|≤1,求出x的范圍,結(jié)合集合的包含關(guān)系得到關(guān)于a的不等式組,解出即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對(duì)值不等式的解法的相關(guān)知識(shí),掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=是定義在R上的奇函數(shù);

(1)求a、b的值,判斷并證明函數(shù)y=fx)在區(qū)間(1,+∞)上的單調(diào)性

(2)已知k<0且不等式ft2-2t+3)+fk-1)<0對(duì)任意的tR恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2x-P2-x,則下列結(jié)論正確的是( 。

A. 為奇函數(shù)且為R上的減函數(shù)

B. ,為偶函數(shù)且為R上的減函數(shù)

C. ,為奇函數(shù)且為R上的增函數(shù)

D. ,為偶函數(shù)且為R上的增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對(duì)本企業(yè)900名員工的工作滿意度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(其中16名女員工,14名男員工)的得分,如下表:

47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49

37 35 34 43 46 36 38 40 39 32 48 33 40 34

)現(xiàn)求得這30名員工的平均得分為40.5分,若規(guī)定大于平均得分為滿意,否則為不滿意,請(qǐng)完成下列表格:

“滿意”的人數(shù)

“不滿意”的人數(shù)

合計(jì)

16

14

合計(jì)

30

)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿意”有關(guān)?

參考數(shù)據(jù):

0.10

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)命題中:

①命題“若x≥2且y≥3,則x+y≥5”為假命題.

②命題“若x2-4x+3=0,則x=3”的逆否命題為:“若x≠3,則x2-4x+3≠0”.

③“x>1”是“|x|>0”的充分不必要條件

④關(guān)于x的不等式|x+1|+|x-3|≥m的解集為R,則m≤4.

其中所有正確命題的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn , 且an﹣a1=2 (n≥2),若bn= + ,則bn=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若任意的ab∈[-1,1],當(dāng)a+b≠0時(shí),總有

(1)判斷函數(shù)fx)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;

(2)解不等式:;

(3)若fx)≤m2-2pm+1對(duì)所有的x∈[-1,1]恒成立,其中p∈[-1,1](p是常數(shù)),試用常數(shù)p表示實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的值;

(2)若函數(shù)在區(qū)間是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

(3)若關(guān)于的方程在區(qū)間內(nèi)有兩個(gè)實(shí)數(shù)根,,求實(shí)數(shù)的取值范圍 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在四棱錐PABCD,底面ABCD是正方形側(cè)面PAD⊥底面ABCD,PAPDAD,E,F分別為PC,BD的中點(diǎn).

求證:(1)EF∥平面PAD;

(2)PA⊥平面PDC.

查看答案和解析>>

同步練習(xí)冊(cè)答案