將編號(hào)為1,2,3,4的四個(gè)小球,分別放入編號(hào)為1,2,3,4的四個(gè)盒子,每個(gè)盒子中有且僅有一個(gè)小球.若小球的編號(hào)與盒子的編號(hào)相同,得1分,否則得0分.記為四個(gè)小球得分總和.

(1)求時(shí)的概率;

(2)求的概率分布及數(shù)學(xué)期望.

 

【答案】

(1);(2)詳見解析.

【解析】

試題分析:(1)先確定時(shí)對應(yīng)的事件,然后利用排列組合的相關(guān)知識(shí)求解;(2)將隨機(jī)變量的可能取值確定下來,然后將對應(yīng)的概率計(jì)算出來,列出分布列求出的數(shù)學(xué)期望與方差.

試題解析:(1)時(shí),則編號(hào)為1,2,3,4的四個(gè)小球中有且僅有兩個(gè)小球的編號(hào)與盒子的編號(hào)相同,

,即時(shí)的概率為;                                      3分

(2)的可能取值有、,                                                4分

,,

,,                       

的分布列如下表所示

 

                                                                                  8分

,                                             9分

.                         10分

考點(diǎn):排列組合、隨機(jī)變量的分布列、數(shù)學(xué)期望與方差

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、將編號(hào)為1,2,3,4,5的五個(gè)球放入編號(hào)為1,2,3,4,5的五個(gè)盒子,每個(gè)盒內(nèi)放一個(gè)球,若恰好有兩個(gè)球的編號(hào)與盒子編號(hào)相同,則不同的投放方法的種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人隨機(jī)地將編號(hào)為1,2,3的三個(gè)小球放入編號(hào)為1,2,3的三個(gè)盒子中,每個(gè)盒子放一個(gè)小球,全部放完.則編號(hào)為2的小球放入到編號(hào)為奇數(shù)的盒子中的概率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將編號(hào)為1、2、3的三個(gè)小球,放入編號(hào)為1、2、3、4的四個(gè)盒子中如果每個(gè)盒子中最多放一個(gè)球,那么不同的放球方法有
24
24
種;如果4號(hào)盒子中至少放兩個(gè)球,那么不同的放球方法有
10
10
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將編號(hào)為1,2,3,4的四個(gè)小球,分別放入編號(hào)為1,2,3,4的四個(gè)盒子,每個(gè)盒子中有且僅有一個(gè)小球.若小球的編號(hào)與盒子的編號(hào)相同,得1分,否則得0分.記ξ為四個(gè)小球得分總和.
(1)求ξ=2時(shí)的概率;
(2)求ξ的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人隨機(jī)地將編號(hào)為1,2,3,4的四個(gè)小球放入編號(hào)為1,2,3,4的四個(gè)盒子中,每個(gè)盒子放一個(gè)小球,全部放完.
(1)求編號(hào)為奇數(shù)的小球放入到編號(hào)為奇數(shù)的盒子中的概率;
(2)當(dāng)一個(gè)小球放到其中一個(gè)盒子時(shí),若球的編號(hào)與盒子的編號(hào)相同時(shí),稱該球是“放對”的,否則稱該球是“放錯(cuò)”的,求至多有2個(gè)球“放對”的概率.

查看答案和解析>>

同步練習(xí)冊答案