5.如果在一個(gè)風(fēng)雨交加的夜里查找線路,從某水庫(kù)閘房(設(shè)為A)到揮部(設(shè)為B)的電話線路發(fā)生了故障,這是一條10km長(zhǎng)的線路,如何迅速查出故障所在?如果沿著線路一小段一小段查找,困難很多,每查一個(gè)點(diǎn)要爬一次電線桿子,10km長(zhǎng),大約有200多根電線桿子呢!
想一想,維修線路的工人師傅怎樣工作最合理?每查一次,可以把待查的線路長(zhǎng)度縮減一半,算一算,要把故障可能發(fā)生的范圍縮小到50m~100m左右,即一兩根電線桿附近,要查多少次?

分析 運(yùn)用“二分法”的原理進(jìn)行查找,即可得出結(jié)論.

解答 解:如圖:

他首先從中點(diǎn)C查,用隨身帶的話機(jī)向兩端測(cè)試時(shí),假設(shè)發(fā)現(xiàn)AC段正常,斷定故障在BC段,再到BC段中點(diǎn)D查,這次若發(fā)現(xiàn)BD段正常,可見故障在CD段,再到CD段中點(diǎn)E來查,依此類推…,每查一次,可以把待查的線路長(zhǎng)度縮減一半,因此只要7次就夠了.

點(diǎn)評(píng) 本題考查“二分法”的原理,比較基礎(chǔ)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在等比數(shù)列{an}中,a3=$\frac{3}{2}$,S3=$\frac{9}{2}$.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)記bn=log2$\frac{6}{{a}_{2n+1}}$,且{bn}為遞增數(shù)列,若Cn=$\frac{1}{{_{n}b}_{n+1}}$,求證:C1+C2+C3+…Cn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=tan$\frac{x}{a}$(a∈N*)的最小正周期是aπ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)有不同的直線a,b和不同的平面α,β,γ,給出三個(gè)命題:
①若a∥α,b∥α,則a∥b
②若a∥α,a∥β,則α∥β
③若α∥β,β∥γ,則α∥γ,
其中真命題的個(gè)數(shù)是( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點(diǎn)P、A、B、C滿足$\overrightarrow{AB}$=$\overrightarrow{PB}$+$\overrightarrow{PC}$,其中點(diǎn)A、B、C不共線,則點(diǎn)P所在的位置是AC的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知x,y,z>0.a(chǎn),b,c是x,y,z的-個(gè)排列.求證:$\frac{a}{x}+\frac{y}+\frac{c}{z}$≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的離心率為$\sqrt{3}$,則雙曲線的漸近線方程為( 。
A.$y=±\frac{{\sqrt{2}}}{2}x$B.$y=±\sqrt{2}x$C.y=±2xD.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓的焦點(diǎn)是F1(-1,0)和F2(1,0),又過點(diǎn)(1,$\frac{3}{2}$).
(1)求橢圓的離心率;
(2)又設(shè)點(diǎn)P在這個(gè)橢圓上,且|PF1|-|PF2|=1,求∠F1PF2的余弦的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=f(x)滿足對(duì)任意x1,x2∈[0,2](x1≠x2),$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>0,且函數(shù)f(x+2)是偶函數(shù),則下列結(jié)論成立的是( 。
A.f(1)<f($\frac{5}{2}$)<f($\frac{7}{2}$)B.f($\frac{7}{2}$)<f(1)<f($\frac{5}{2}$)C.f($\frac{7}{2}$)<f($\frac{5}{2}$)<f(1)D.f($\frac{5}{2}$)<f(1)<f($\frac{7}{2}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案