【題目】選修4-5:不等式選講
已知函數(shù)(其中).
(1)當時,求不等式的解集;
(2)若關(guān)于的不等式恒成立,求的取值范圍.
【答案】(1).
(2).
【解析】試題分析:(1)方法一:分類討論去掉絕對值,轉(zhuǎn)化為一般的不等式,即可求解不等式的解集;
方法二:去掉絕對值,得到分段函數(shù),畫出函數(shù)的圖象,結(jié)合圖象即可求解不等式的解集.
(2)不等式即關(guān)于的不等式恒成立,利用絕對值不等式,得,進而求解實數(shù)的取值范圍.
試題解析:
(1)當時,函數(shù),
則不等式為,
①當時,原不等式為,解得: ;
②當時,原不等式為,解得: .此時不等式無解;
③當時,原不等式為,解得: ,
原不等式的解集為.
方法二:當時,函數(shù) ,畫出函數(shù)的圖象,如圖:
結(jié)合圖象可得原不等式的解集為.
(2)不等式即為 ,
即關(guān)于的不等式恒成立.
而 ,
所以,
解得或,
解得或.
所以的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】(1)求函數(shù)的零點個數(shù);
(2)證明:當,函數(shù)有最小值,設(shè)的最小值為,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了檢驗學習情況,某培訓機構(gòu)于近期舉辦一場競賽活動,分別從甲、乙兩班各抽取10名學員的成績進行統(tǒng)計分析,其成績的莖葉圖如圖所示(單位:分),假設(shè)成績不低于90分者命名為“優(yōu)秀學員”.
(1)分別求甲、乙兩班學員成績的平均分(結(jié)果保留一位小數(shù));
(2)從甲班4名優(yōu)秀學員中抽取兩人,從乙班2名80分以下的學員中抽取一人,求三人平均分不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)若,且函數(shù)的圖象是函數(shù)圖象的一條切線,求實數(shù)的值;
(2)若不等式對任意恒成立,求實數(shù)的取值范圍;
(3)若對任意實數(shù),函數(shù)在上總有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年8月20日起,市交警支隊全面啟動路口秩序環(huán)境綜合治理,重點整治機動車不禮讓斑馬線和行人的行為,經(jīng)過一段時間的治理,從市交警隊數(shù)據(jù)庫中調(diào)取了20個路口近三個月的車輛違章數(shù)據(jù),經(jīng)統(tǒng)計得如圖所示的頻率分布直方圖,統(tǒng)計數(shù)據(jù)中凡違章車次超過30次的設(shè)為“重點關(guān)注路口”.
(1)現(xiàn)從“重點關(guān)注路口”中隨機抽取兩個路口安排交警去執(zhí)勤,求抽出來的路口的違章車次一個在,一個在中的概率;
(2)現(xiàn)從支隊派遣5位交警,每人選擇一個路口執(zhí)勤,每個路口至多1人,違章車次在的路口必須有交警去,違章車次在的不需要交警過去,設(shè)去“重點關(guān)注路口”的交警人數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天.
(Ⅰ)求3月1日到14日空氣質(zhì)量指數(shù)的中位數(shù);
(Ⅱ)求此人到達當日空氣重度污染的概率;
(Ⅲ)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產(chǎn)品按行業(yè)生產(chǎn)標準分成8個等級,等級系數(shù)X依次為1,2,…8,其中為標準,為標準. 已知甲廠執(zhí)行標準生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為6元/件; 乙廠執(zhí)行標準生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為元/件,假定甲, 乙兩廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標準.
(Ⅰ)已知甲廠產(chǎn)品的等級系數(shù)的概率分布列如下所示:
5 | 6 | 7 | 8 | |
0.4 | b | 0.1 |
且的數(shù)學期望, 求a,b的值;
(Ⅱ)為分析乙廠產(chǎn)品的等級系數(shù),從該廠生產(chǎn)的產(chǎn)品中隨機抽取30件,相應(yīng)的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:
用這個樣本的頻率分布估計總體分布,將頻率視為概率,求等級系數(shù)的數(shù)學期望;
(Ⅲ)在(Ⅰ),(Ⅱ)的條件下,若以“性價比”為判斷標準,則哪個工廠的產(chǎn)品更具可購買性?說明理由.
注: ①產(chǎn)品的“性價比”=;②“性價比”大的產(chǎn)品更具可購買性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在點處的切線是.
(1)求函數(shù)的極值;
(2)當恒成立時,求實數(shù)的取值范圍(為自然對數(shù)的底數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com