11.M={x∈R|x≥2},a=π,則下列四個式子①a∈M;②{a}∈M;③a⊆M;④{a}∩M={π},其中正確的是( 。
A.①②B.①④C.②③D.①③

分析 根據(jù)元素與集合的關(guān)系,集合與集合的關(guān)系不難找出答案.

解答 解:根據(jù)條件知:a是集合M的元素,故a∈M.而包含一個元素的集合{a}中的元素都是集合M的元素,且2∈M,但2∉{a},所以{a}⊆M.
故選:C.

點評 考查元素與集合的關(guān)系,集合與集合的關(guān)系,二者不要混淆,要理解真子集的定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在空間直角坐標(biāo)系中,點A(1,0,1)與點B(2,1,-1)間的距離為(  )
A.$\sqrt{3}$B.3C.$\sqrt{6}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為 12,則$\frac{3}{a}$+$\frac{4}$的最小值為( 。
A.$\frac{49}{6}$B.$\frac{25}{6}$C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某工廠要建造一個長方體無蓋貯水池,其容積為6400m3,深為4m,如果池底每1m2的造價為300元,池壁每1m2的造價為240元,問怎樣設(shè)計水池能使總造價最低,最低總造價是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.3x=4,則x=(  )
A.log43B.64C.log34D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)點P是橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$上的一點,M、N分別是兩圓:(x+3)2+y2=1和(x-3)2+y2=1上的點,則|PM|+|PN|的最大值為( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.一條線段AB的長等于2a,兩端點A、B分別在x軸、y軸上滑動,點M在線段AB上,且|AM|﹕|MB|=1﹕2,則點M的軌跡方程為$\frac{9}{4}$x2+9y2=4a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知奇函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),且不等式$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0對任意兩個不相等的正實數(shù)x1,x2都成立,在下列不等式中,正確的是(  )
A.f(-5)>f(3)B.f(-5)<f(3)C.f(-3)>f(-5)D.f(-3)<f(-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若$sin({\frac{π}{3}-α})=\frac{1}{3}$,則$cos({\frac{π}{3}+2α})$=(  )
A.$\frac{7}{9}$B.$\frac{2}{3}$C.$-\frac{2}{3}$D.$-\frac{7}{9}$

查看答案和解析>>

同步練習(xí)冊答案