20.計(jì)算:$\underset{lim}{n→∞}$$\frac{2n}{4n+1}$=$\frac{1}{2}$.

分析 將$\frac{2n}{4n+1}$的分子分母同時(shí)除以n,化為$\frac{2}{4+\frac{1}{n}}$的形式,再求極限.

解答 解:$\underset{lim}{n→∞}$$\frac{2n}{4n+1}$=$\underset{lim}{n→∞}$$\frac{2}{4+\frac{1}{n}}$,
∵$\underset{lim}{n→∞}$$\frac{1}{n}$=0,
∴$\underset{lim}{n→∞}$$\frac{2}{4+\frac{1}{n}}$=$\frac{2}{4}$=$\frac{1}{2}$,
故填:$\frac{1}{2}$.

點(diǎn)評(píng) 本題主要考查了極限及其運(yùn)算,由于分子分母都是關(guān)于n的一次式,所以分子分母同時(shí)除以n即可求極限,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一只袋內(nèi)裝有m個(gè)白球,n-m個(gè)黑球,連續(xù)不放回地從袋中取球,直到取出黑球?yàn)橹梗O(shè)此時(shí)取了ξ個(gè)白球,下列概率等于$\frac{(n-m{)A}_{m}^{2}}{{A}_{n}^{3}}$的是( 。
A.P(ξ=3)B.P(ξ≥2)C.P(ξ≤3)D.P(ξ=2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知n∈N*,n>1,n個(gè)實(shí)數(shù)a1,a2,…,an 滿足a1+a2+…+an=0,|a1|+|a2|+…+|an |=1.求證:|a1+2a2+3a3+…+n|an|≤$\frac{n-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=$\frac{8}{x-1}$+1的單調(diào)遞減區(qū)間是(  )
A.(-∞,1)∪(1,+∞)B.(-∞,-1)∪(-1,+∞)C.(-∞,1),(1,+∞)D.(-∞,-1),(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx,g(x)=ax2-x(a≠0).
(1)若函數(shù)y=f(x)與y=g(x)的圖象在公共點(diǎn)P處有相同的切線,求實(shí)數(shù)a的值并求點(diǎn)P的坐標(biāo);
(2)若函數(shù)y=f(x)與y=g(x)的圖象有兩個(gè)不同的交點(diǎn)M、N,求實(shí)數(shù)a的取值范圍;
(3)在(2)的條件下,過線段MN的中點(diǎn)作x軸的垂線分別與y=f(x)的圖象和y=g(x)的圖象交于S、T點(diǎn),以S為切點(diǎn)作y=f(x)的切線l1,以T為切點(diǎn)作y=g(x)的切線l2,是否存在實(shí)數(shù)a使得l1∥l2,如果存在,求出a的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某校為了解學(xué)生一次考試后數(shù)學(xué)、物理兩個(gè)科目的成績(jī)情況,從中隨機(jī)抽取了25位考生的成績(jī)進(jìn)行統(tǒng)計(jì)分析.25位考生的數(shù)學(xué)成績(jī)已經(jīng)統(tǒng)計(jì)在莖葉圖中,物理成績(jī)?nèi)缦拢?br />90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(Ⅰ)請(qǐng)根據(jù)數(shù)據(jù)在答題卡的莖葉圖中完成物理成績(jī)統(tǒng)計(jì);
(Ⅱ)請(qǐng)根據(jù)數(shù)據(jù)在答題卡上完成數(shù)學(xué)成績(jī)的頻數(shù)分布表及數(shù)學(xué)成績(jī)的頻率分布直方圖;
數(shù)學(xué)成績(jī)的頻數(shù)分布表

(Ⅲ)設(shè)上述樣本中第i位考生的數(shù)學(xué)、物理成績(jī)分別為xi,yi(i=1,2,3,…,25).通過對(duì)樣本數(shù)據(jù)進(jìn)行初步處理發(fā)現(xiàn):數(shù)學(xué)、物理成績(jī)具有線性相關(guān)關(guān)系,得到:$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}{x}_{i}$=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
求y關(guān)于x的線性回歸方程,并據(jù)此預(yù)測(cè)當(dāng)某考生的數(shù)學(xué)成績(jī)?yōu)?00分時(shí),該考生的物理成績(jī)(精確到1分).
附:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某校學(xué)習(xí)小組開展“學(xué)生數(shù)學(xué)成績(jī)與化學(xué)成績(jī)的關(guān)系”的課題研究,對(duì)該校高二年級(jí)800名學(xué)生上學(xué)期期 數(shù)學(xué)和化學(xué)成績(jī),按優(yōu)秀和不優(yōu)秀分類得結(jié)果:數(shù)學(xué)和化學(xué)都優(yōu)秀的有60人,數(shù)學(xué)成績(jī)優(yōu)秀但化學(xué)不優(yōu)秀的有140人,化學(xué)成績(jī)優(yōu)秀但數(shù)學(xué)不優(yōu)秀的有100人.
(Ⅰ)補(bǔ)充完整表格并判斷能否在犯錯(cuò)概率不超過0.001前提下認(rèn)為該校學(xué)生的數(shù)學(xué)成績(jī)與化學(xué)成績(jī)有關(guān)系?
數(shù)學(xué)優(yōu)秀數(shù)學(xué)不優(yōu)秀總計(jì)
化學(xué)優(yōu)秀60           100        160          
化學(xué)不優(yōu)秀140500640
總計(jì)200600800
(Ⅱ)現(xiàn)有4名成員甲、乙、丙、丁隨機(jī)分成兩組,每組2人,一組負(fù)責(zé)收集成績(jī),另一組負(fù)責(zé)數(shù)據(jù)處理.求學(xué)生甲分到負(fù)責(zé)收集成績(jī)組,學(xué)生乙分到負(fù)責(zé)數(shù)據(jù)處理組的概率.
p(K2>k00.0100.0050.001
k06.6357.87910.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知在四面體ABCD中,E、F分別是AC、BD的中點(diǎn),若CD=2,AB=4,EF⊥CD,則EF與AB所成的角為( 。
A.90°B.45°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a4=7且4Sn=n(an+an+1),則Sn-6an的最小值為(  )
A.-36B.-30C.-27D.-20

查看答案和解析>>

同步練習(xí)冊(cè)答案