18.已知集合A={0,1,2,3},B={x|x(x-3)<0},則A∩B=(  )
A.{0,1,2,3}B.{0,1,2}C.{1,2}D.{1,2,3}

分析 化簡(jiǎn)集合B,根據(jù)交集的定義寫(xiě)出A∩B即可.

解答 解:集合A={0,1,2,3},
B={x|x(x-3)<0}={x|0<x<3},
則A∩B={1,2}.
故選:C.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.命題:對(duì)?x∈R,x3-x2+1≤0的否定是$?{x_0}∈R,x_0^3-x_0^2+1>0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若$sinα=-\frac{1}{3}$,則cos(π-2α)=( 。
A.$-\frac{{4\sqrt{2}}}{9}$B.$\frac{{4\sqrt{2}}}{9}$C.$-\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.借助計(jì)算器用二分法求方程2x+3x=7的近似解x0=1.43(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在一次聯(lián)考后,某校對(duì)甲、乙兩個(gè)理科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表,且已知在甲、乙兩個(gè)理科班全部110人中隨機(jī)抽取1人,成績(jī)?yōu)閮?yōu)秀的概率為$\frac{3}{11}$.
優(yōu)秀非優(yōu)秀合計(jì)
甲班10
乙班30
合計(jì)110
(1)請(qǐng)完成右面的列聯(lián)表,根據(jù)列聯(lián)表的數(shù)據(jù),能否有99%的把握認(rèn)為成績(jī)與班級(jí)有關(guān)系?(2)在甲、乙兩個(gè)理科班優(yōu)秀的學(xué)生中隨機(jī)抽取兩名學(xué)生,用ξ表示抽得甲班的學(xué)生人數(shù),求ξ的分布列.
參考公式和數(shù)據(jù):${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+c})({b+d})({a+b})({c+d})}}$
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.定義在R上的偶函數(shù)f(x)=$\frac{ax+b}{{x}^{2}+c}$的圖象如圖所示,則實(shí)數(shù)a、b、c的大小關(guān)系是b>c>a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,則$z=\frac{y+1}{x+1}$的取值范圍是( 。
A.[0,+∞)B.$[\frac{1}{2},2]$C.$[\frac{5}{4},2]$D.$[0,\frac{4}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.從N個(gè)編號(hào)中要抽取n個(gè)號(hào)碼入樣,若采用系統(tǒng)抽樣方法抽取,則分段間隔應(yīng)為([$\frac{N}{n}$]表示$\frac{N}{n}$的整數(shù)部分)(  )
A.$\frac{N}{n}$B.nC.[$\frac{N}{n}$]D.[$\frac{N}{n}$]+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)$f(x)=|x+\frac{1}{a}|+|x-a|(a>0)$.
(1)求證:f(x)≥2;
(2)若f(2)<4,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案