【題目】一臺(tái)機(jī)器按不同的轉(zhuǎn)速生產(chǎn)出來的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器的運(yùn)轉(zhuǎn)的速度而變化,具有線性相關(guān)關(guān)系,下表為抽樣試驗(yàn)的結(jié)果:

轉(zhuǎn)速x(轉(zhuǎn)/秒)

8

10

12

14

16

每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y(件)

5

7

8

9

11

(1)如果y對(duì)x有線性相關(guān)關(guān)系,求回歸方程;
(2)若實(shí)際生產(chǎn)中,允許每小時(shí)生產(chǎn)的產(chǎn)品中有缺點(diǎn)的零件最多有10個(gè),那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在設(shè)么范圍內(nèi)?

【答案】解:(1)=12,=8,
40+70+96+126+176﹣5×12×8=28,
64+100+144+196+256﹣5×144=40,
∴b=0.7,a=8﹣0.7×12=﹣0.4
∴回歸直線方程為:y=0.7x﹣0.4;
(3)由上一問可知0.7x﹣0.4≤10,
解得x≤14.85.


【解析】(1)先做出橫標(biāo)和縱標(biāo)的平均數(shù),做出利用最小二乘法求線性回歸方程的系數(shù)的量,做出系數(shù),求出a,寫出線性回歸方程.
(2)根據(jù)上一問做出的線性回歸方程,使得函數(shù)值小于或等于10,解出不等式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的邊長為1的正方形 沿 軸滾動(dòng)(向右為順時(shí)針,向左為逆時(shí)針).設(shè)頂點(diǎn) 的軌跡方程是,則關(guān)于的最小正周期在其兩個(gè)相鄰零點(diǎn)間的圖像與x軸所圍區(qū)域的面積S的正確結(jié)論是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017省息一中第七次適應(yīng)性考已知函數(shù)),且的導(dǎo)數(shù)為.

(Ⅰ)若是定義域內(nèi)的增函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅱ)若方程有3個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在區(qū)間(0,+∞)上單調(diào)遞增的是(
A.y=
B.y=1﹣x
C.y=x2﹣x
D.y=1﹣x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2﹣3x<0},B={x|(x+2)(4﹣x)≥0},C={x|a<x≤a+1}.
(1)求A∩B;
(2)若B∪C=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若有唯一解,求實(shí)數(shù)的值;

(Ⅱ)證明:當(dāng)時(shí),

(附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下統(tǒng)計(jì)資料:

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

若由資料知,y對(duì)x呈線性相關(guān)關(guān)系,試求:
(Ⅰ)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+;
(Ⅲ)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?
(參考數(shù)據(jù):2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合P={x|a+1≤x≤2a+1},Q={x|﹣2≤x≤5}
(1)若a=3,求集合(RP)∩Q;
(2)若PQ,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過直線上一動(dòng)點(diǎn)不在軸上)作焦點(diǎn)為的拋物線的兩條切線, 為切點(diǎn),直線分別與軸交于點(diǎn).

(Ⅰ)求證: ,并求的外接圓面積的最小值;

(Ⅱ)求證:直線恒過一定點(diǎn)。

查看答案和解析>>

同步練習(xí)冊答案