已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,側(cè)棱與底面所成的角為α(0°<α<90°),點(diǎn)B1在底面上的射影D落在BC上,
(1)求證:AC⊥平面BB1C1C;
(2)若AB1⊥BC1,D為BC的中點(diǎn),求α;
(3)若α=arccos,AC=BC=AA1時(shí),求二面角C1-AB-C的大小。

解:(1)∵B1D⊥平面ABC,AC平面ABC,
∴B1D⊥AC,
又AC⊥BC,BC∩B1D=D,
∴AC⊥平面BB1C1C;
(2)∵AC⊥平面BB1C1C,AB1⊥BC1
由三垂線定理可知,B1C⊥BC1,
∴平行四邊形BB1C1C為菱形,
此時(shí),BC=BB1,
又∵B1D⊥BC,D為BC中點(diǎn),B1C=B1B,
∴△BB1C為正三角形,
∴∠B1BC=60°,即α=60°;
(3)過(guò)C1作C1E⊥BC于E,則C1E⊥平面ABC,
過(guò)E作EF⊥AB于F,連結(jié)C1F,
由三垂線定理,得C1F⊥AB,
∴∠C1FE是所求二面角C1-AB-C的平面角,
設(shè)AC=BC=AA1=a,在Rt△CC1E中,
由∠C1BE=α=,C1E=a,
在Rt△BEF中,∠EBF=45°,EF=
∴∠C1FE=45°,
故所求的二面角C1-AB-C為45°。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1的側(cè)面BB1C1C是邊長(zhǎng)為2的菱形,∠B1BC=60°,側(cè)面BB1C1C⊥底面ABC,∠ABC=90°,二面角A-B1B-C為30°.
(1)求證:AC⊥平面BB1C1C;
(2)求AB1與平面BB1C1C所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1的側(cè)面BB1C1C與底面ABC垂直,BB1=BC,∠B1BC=60°,AB=AC,M是B1C1的中點(diǎn).
(Ⅰ)求證:AB1∥平面A1CM;
(Ⅱ)若AB1與平面BB1C1C所成的角為45°,求二面角B-AC-B1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知斜三棱柱ABC-A1B1C1的底面邊長(zhǎng)AB=2,BC=3,BC⊥面ABC1,CC1與面ABC所成的角為60°則斜三棱柱ABC-A1B1C1體積的最小值是
9
3
9
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知斜三棱柱ABC-A1B1C1的各棱長(zhǎng)均為2,側(cè)棱與底面所成角為
π3
,且側(cè)面ABB1A1垂直于底面.
(1)判斷B1C與C1A是否垂直,并證明你的結(jié)論;
(2)求四棱錐B-ACC1A1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知斜三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,點(diǎn)D為AC的中點(diǎn),A1D⊥平面ABC,A1B⊥ACl
(I)求證:AC1⊥AlC; 
(Ⅱ)求二面角A-A1B-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案