已知p:
2x-1
≤1,q:(x-a)(x-a-1)≤0.若p是q的充分不必要條件,求實數(shù)a的取值范圍.
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:結(jié)合不等式的性質(zhì),利用充分條件和必要條件的定義進行判斷.
解答: 解:由
2x-1
≤1,得0≤2x-1≤1,即
1
2
≤x≤1

令A(yù)={x|
2x-1
≤1},得A={x|
1
2
≤x≤1},
令B={x|(x-a)(x-a-1)≤0},
得B={x|a≤x≤a+1},
若p是q的充分不必要條件,則A是B的真子集,
a≤
1
2
a+1≥1
,即0≤a≤
1
2
,
故實數(shù)a的取值范圍是[0,
1
2
].
點評:本題主要考查充分條件和必要條件的應(yīng)用,利用不等式的解法是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)對任意x∈R都有f(x+4)-f(x)=2f(2),則f(2014)的值等于( 。
A、2B、3C、4D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x2+bx+c在x=1處的切線是y=(3a-3)x-3a+4.
(1)試用a表示b和c;
(2)求函數(shù)f(x)在[1,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求不等式x2-2x-3<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對勾函數(shù)f(x)=ax+
b
x
,(a>0,b>0)是一種常見的基本初等函數(shù),為了研究對勾函數(shù)f(x)=x+
4
x
的一些性質(zhì),例如單調(diào)性,奇偶性,最值等性質(zhì).首先通過列表法,列舉了函數(shù)f(x)=x+
4
x
在(0,+∞)上部分自變量與函數(shù)值的對應(yīng)值表,如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 4.8 7.57
請觀察表中y值隨x值變化的特點,完成以下的問題.
(Ⅰ)函數(shù)f(x)=x+
4
x
,(x>0)在區(qū)間(0,2)上遞減;函數(shù)f(x)=x+
4
x
,(x>0)在區(qū)間
 
上遞增.當(dāng)x=
 
時,y最小=
 

(Ⅱ)證明:函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間(0,2)遞減.
(Ⅲ)思考:函數(shù)f(x)=x+
4
x
(x<0)時,有最值嗎?是最大值還是最小值?(注意:第(Ⅲ)問不必說明理由,直接寫答案即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知長方形ABCD的兩條對角線的交點為E(1,0),且AB與BC所在的直線方程分別為x+3y-5=0與ax-y+5=0.
(1)求AD所在的直線方程;
(2)求出長方形ABCD的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面是邊長為a的正方形,所有側(cè)棱長相等且等于a,若其外接球的半徑為R,則
a
R
等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

海上有A、B兩島相距10海里,從A島望B島和C島成60°的視角,從B島望C島和A島成30°視角,則B、C之間的距離是
 
海里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)滿足f(x)-f(x+2)=0,且當(dāng)x∈[0,1]時,f(x)=x•ex,若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=f(x)-kx-2k有且僅有3個零點,則實數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案