設數(shù)列{an}的前n項和為Sn,對任意n∈N*都有Sn=(
an+1
2
2成立.
(1)求數(shù)列{an}的前n項和Sn
(2)記數(shù)列bn=an+λ,n∈N*,λ∈R,其前n項和為Tn
①若數(shù)列{Tn}的最小值為T6,求實數(shù)λ的取值范圍;
②若數(shù)列{bn}中任意的不同兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“封閉數(shù)列”.試問:是否存在這樣的“封閉數(shù)列”{bn},使得對任意n∈N*,都有Tn≠0,且
1
12
1
T1
+
1
T2
+
1
T3
+L+
1
Tn
11
18
.若存在,求實數(shù)λ的所有取值;若不存在,請說明理由.
(1)法一:由Sn=(
an+1
2
2 得:4Sn=
a2n
+2an+1
①,4Sn+1=
a2n+1
+2an+1+1
②,
②-①得4an+1=
a2n+1
-
a2n
+2an+1-2an
,得到2(an+1+an)=(an+1+an)(an+1-an
由題知an+1+an≠0得an+1-an=2,
S1=a1=(
a1+1
2
)2
,化為4a1=
a21
+2a1+1
,解得a1=1.
∴數(shù)列{an}是以1為首項,2為公差的等差數(shù)列,∴an=1+(n-1)×1=2n-1,
因此前n項和Sn=
n(1+2n-1)
2
=n2;
法二:由S1=a1=(
a1+1
2
)2
,化為4a1=
a21
+2a1+1
,解得a1=1.
當n≥2時,2
Sn
=an+1=Sn-Sn-1+1
,
得到(
Sn
-1)2=Sn1
,即
Sn
-
Sn-1
=1

所以數(shù)列{
Sn
}是以1為首項,1為公差的等差數(shù)列,
Sn
=1+(n-1)×1
=n,得到Sn=n2
(2)①由bn+2n-1+λ得到其前n項和Tn=n2+λn,
由題意Tn最小值為T6,即Tn≥T6,n2+λn≥36+6λ,
化為
11
2
≤-
λ
2
13
2
,∴λ∈[-13,-11].
②因{bn}是“封閉數(shù)列”,設bp+bq=bm(p,q,m∈Z*,且任意兩個不相等 )得
2p-1+λ+2q-1+λ=2m-1+λ,化為λ=2(m-p-q)+1,則λ為奇數(shù).
由任意n∈N*,都有Tn≠0,且
1
12
1
T1
+
1
T2
+
1
T3
+…+
1
Tn
11
18

得 
1
12
T1
11
18
,化為
7
11
<λ<11
,即λ的可能值為1,3,5,7,9,
Tn=n2+λn>0,因為
1
n(n+λ)
=
1
λ
(
1
n
-
1
n+λ
)
,
檢驗得滿足條件的λ=3,5,7,9,
即存在這樣的“封閉數(shù)列”{bn},使得對任意n∈N*,都有Tn≠0,
1
12
1
T1
+
1
T2
+
1
T3
+…+
1
Tn
11
18
.,
所以實數(shù)λ的所有取值集合為{3,5,7,9}.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列an的前n項的和為Sn,a1=
3
2
Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項公式;
(3)設bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為an(n∈N*
(1)寫出an+1與an的關系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鄭州一模)設數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為(  )

查看答案和解析>>

同步練習冊答案