如圖,經(jīng)過B(1,2)作兩條互相垂直的直線l1和l2,l1交y軸正半軸于點A,l2交x軸正半軸于點C.
(1)若A(0,1),求點C的坐標;
(2)試問是否總存在經(jīng)過O,A,B,C四點的圓?若存在,求出半徑最小的圓的方程;若不存在,請說明理由.

解:(1)由直線l1經(jīng)過兩點A(0,1),B(1,2),得l1的方程為x-y+1=0.
由直線l2⊥l1,且直線l2經(jīng)過點B,得l2的方程為x+y-3=0.
所以,點C的坐標為(3,0).
(2)因為AB⊥BC,OA⊥OC,所以總存在經(jīng)過O,A,B,C四點的圓,且該圓以AC為直徑.
①若l1⊥y軸,則l2∥y軸,此時四邊形OABC為矩形,
②若l1與y軸不垂直,則兩條直線斜率都存在.不妨設(shè)直線l1的斜率為k,則直線l2的斜率為
所以直線l1的方程為y-2=k(x-1),從而A(0,2-k);
直線l2的方程為,從而C(2k+1,0).
解得,注意到k≠0,所以
此時|AC|2=(2-k)2+(2k+1)2=5k2+5>5,,
所以半徑的最小值為
此時圓的方程為
分析:(1)先求l1的方程,進而可求l2的方程,即可得到點C的坐標;
(2)因為AB⊥BC,OA⊥OC,所以總存在經(jīng)過O,A,B,C四點的圓,且該圓以AC為直徑,分類討論,確定A、C的坐標,表示出AC,即可求得結(jié)論.
點評:本題考查確定直線位置的幾何要素,直線的傾斜角和斜率,過兩點的直線斜率的計算公式,直線方程的點斜式,兩條直線平行或垂直的判定,圓的標準方程,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(-1,2),且與x軸交點的橫坐標分別為x1,x2.其中-2<x1<-1,0<x2<1,
下列結(jié)論:
①4a-2b+c<0;  
②2a-b<0; 
③a<-1; 
④b2+8a>4ac.
其中正確的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)如圖,經(jīng)過B(1,2)作兩條互相垂直的直線l1和l2,l1交y軸正半軸于點A,l2交x軸正半軸于點C.
(1)若A(0,1),求點C的坐標;
(2)試問是否總存在經(jīng)過O,A,B,C四點的圓?若存在,求出半徑最小的圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(-1,2),且與x軸交點的橫坐標分別為x1、x2,其中-2<x1<-1,0<x2<1.下列結(jié)論:①4a-2b+c<0;②2a-b<0;③a<-1;④b2+8a>4ac.其中正確結(jié)論的序號是
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市會考說明:題目示例(解析版) 題型:解答題

如圖,經(jīng)過B(1,2)作兩條互相垂直的直線l1和l2,l1交y軸正半軸于點A,l2交x軸正半軸于點C.
(1)若A(0,1),求點C的坐標;
(2)試問是否總存在經(jīng)過O,A,B,C四點的圓?若存在,求出半徑最小的圓的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案