【題目】在平面直角坐標(biāo)系中,橢圓的離心率,且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)若點(diǎn)都在橢圓上,且中點(diǎn)在線段(不包括端點(diǎn))上.
①求直線的斜率;
②求面積的最大值.
【答案】(1);(2)①;②.
【解析】
(1)根據(jù)題意,由離心率,且點(diǎn)在橢圓上,列出方程,計(jì)算的值,則橢圓方程可求;
(2)利用“點(diǎn)差法”求出所在直線的斜率,設(shè)出直線方程,與橢圓方程聯(lián)立,由弦長(zhǎng)公式求得弦長(zhǎng),再由點(diǎn)到直線的距離公式求出原點(diǎn)到直線的距離,代入三角形面積公式,利用基本不等式求得最值.
(1)離心率,
由代入橢圓方程,可得,
又
解得, ,
即有橢圓方程為;
(2)①設(shè)
可得,
相減可得,
由題意可得,
即為,
可得直線的斜率為;
②設(shè)直線的方程為,
代入橢圓方程可得,,
由,解得,
,
,
又到的距離為,
即有面積為
當(dāng)且僅當(dāng),即時(shí),取得最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角梯形PBCD中, ,A為PD的中點(diǎn),如下左圖。將沿AB折到的位置,使,點(diǎn)E在SD上,且,如下圖。
(1)求證: 平面ABCD;
(2)求二面角E—AC—D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)且是定義域?yàn)?/span>R的奇函數(shù).
求k值;
若,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;
若,且在上的最小值為,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)X~N(μ1,),Y~N(μ2,),這兩個(gè)正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 ( )
A. P(Y≥μ2)≥P(Y≥μ1)
B. P(X≤σ2)≤P(X≤σ1)
C. 對(duì)任意正數(shù)t,P(X≥t)≥P(Y≥t)
D. 對(duì)任意正數(shù)t,P(X≤t)≥P(Y≤t)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī),得到如下所示的列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
總計(jì) |
已知在全部105人中隨機(jī)抽取1人,成績(jī)優(yōu)秀的概率為,則下列說(shuō)法正確的是( )
A. 列聯(lián)表中的值為30,的值為35
B. 列聯(lián)表中的值為15,的值為50
C. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”
D. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,不能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在處的切線與直線平行,求實(shí)數(shù)的值;
(2)試討論函數(shù)在區(qū)間上最大值;
(3)若時(shí),函數(shù)恰有兩個(gè)零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與軸相交于點(diǎn),點(diǎn)坐標(biāo)為,過(guò)點(diǎn)作直線的垂線,交直線于點(diǎn).記過(guò)、、三點(diǎn)的圓為圓.
(1)求圓的方程;
(2)求過(guò)點(diǎn)與圓相交所得弦長(zhǎng)為的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù)
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少?lài)崢?biāo)準(zhǔn)煤?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù),設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)對(duì)任意均有 求的取值范圍.
注:為自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com