【題目】在平面直角坐標(biāo)系中,橢圓的離心率,且點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若點(diǎn)都在橢圓上,且中點(diǎn)在線段(不包括端點(diǎn))上.

①求直線的斜率;

②求面積的最大值.

【答案】1;(2)①;②.

【解析】

(1)根據(jù)題意,由離心率,且點(diǎn)在橢圓上,列出方程,計(jì)算的值,則橢圓方程可求;

(2)利用“點(diǎn)差法”求出所在直線的斜率,設(shè)出直線方程,與橢圓方程聯(lián)立,由弦長(zhǎng)公式求得弦長(zhǎng),再由點(diǎn)到直線的距離公式求出原點(diǎn)到直線的距離,代入三角形面積公式,利用基本不等式求得最值.

(1)離心率,

代入橢圓方程,可得,

解得, ,

即有橢圓方程為;

(2)①設(shè)

可得,

相減可得,

由題意可得,

即為,

可得直線的斜率為

②設(shè)直線的方程為,

代入橢圓方程可得,

,解得

,

,

的距離為,

即有面積為

當(dāng)且僅當(dāng),即時(shí),取得最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角梯形PBCD中, ,APD的中點(diǎn),如下左圖。將沿AB折到的位置,使,點(diǎn)ESD上,且,如下圖。

1)求證: 平面ABCD;

2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義域?yàn)?/span>R的奇函數(shù).

k值;

,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;

,且上的最小值為,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)X~N(μ1),Y~N(μ2,),這兩個(gè)正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 對(duì)任意正數(shù)t,P(X≥t)≥P(Y≥t)

D. 對(duì)任意正數(shù)t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī),得到如下所示的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

乙班

30

總計(jì)

已知在全部105人中隨機(jī)抽取1人,成績(jī)優(yōu)秀的概率為,則下列說(shuō)法正確的是(  )

A. 列聯(lián)表中的值為30,的值為35

B. 列聯(lián)表中的值為15,的值為50

C. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”

D. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,不能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)處的切線與直線平行,求實(shí)數(shù)的值;

(2)試討論函數(shù)在區(qū)間上最大值;

(3)若時(shí),函數(shù)恰有兩個(gè)零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線軸相交于點(diǎn),點(diǎn)坐標(biāo)為,過(guò)點(diǎn)作直線的垂線,交直線于點(diǎn).記過(guò)、三點(diǎn)的圓為圓

1)求圓的方程;

2)求過(guò)點(diǎn)與圓相交所得弦長(zhǎng)為的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù)

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少?lài)崢?biāo)準(zhǔn)煤?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),設(shè)函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)對(duì)任意均有的取值范圍.

注:為自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案