lim
n→∞
(
1
n2+1
+
2
n2+1
+
3
n2+1
+…+
2n
n2+1
)
=
 
分析:首先求極限
lim
n→∞
(
1
n2+1
+
2
n2+1
+
3
n2+1
+…+
2n
n2+1
)
發(fā)現(xiàn)式子上面各項是等差數(shù)列,即可求和,得到
2n2+n
n2+1
容易求得它的極限為2,即為答案.
解答:解:設(shè)A=
1
n2+1
+
2
n2+1
+
3
n2+1
+…+
2n
n2+1
=
1+2+3+…+2n
n2+1
=
2n2+n
n2+1

所以
lim
n→∞
(
1
n2+1
+
2
n2+1
+
3
n2+1
+…+
2n
n2+1
)
=
lim
n→∞
A=
lim
n→∞
2n2+n
n2+1
=2

故答案為2.
點評:此題主要考查極限及其運算的問題,其中涉及到等差數(shù)列的求和問題,屬于綜合題,有一定的計算量,為中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

求極限
lim
n→∞
(
1
n2+1
+
2
n2+1
+
3
n2+1
+…+
2n
n2+1
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

lim
n→∞
(
1
n2+1
+
3
n2+1
+…+
2n-1
n2+1
)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
lim
n→∞
(
1
n2+1
+
2
n2+1
+…+
n
n2+1
)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•重慶)
lim
n→∞
1
n2+5n
-n
=
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2004•朝陽區(qū)一模)已知a=
lim
n→+∞
(
1
n2
+
2
n2
+…+
n
n2
),b=
lim
n→+∞
(1+
1
3
+
1
9
+…+
1
3n-1
+…)
,則a、b的值分別為
1
2
,
3
2
1
2
,
3
2
c=
lim
n→+∞
an+bn
an+1+bn+1
=
2
3
2
3

查看答案和解析>>

同步練習冊答案