已知數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
(1)   (2)

試題分析:(1)題目已知之間的關(guān)系,令,利用,即可求的的值,令,利用與前n項(xiàng)和之間的關(guān)系即可得到,令檢驗(yàn)首項(xiàng)即可得到的通項(xiàng)公式.
(2)把(1)得到的通項(xiàng)公式代入可以得到是由等比數(shù)列,數(shù)列之和,才用分組求和法,首先利用等比數(shù)列前n項(xiàng)和公式求的等比數(shù)列的前n項(xiàng)和,再利用
對(duì)數(shù)列進(jìn)行分組
即可求的數(shù)列的前n項(xiàng)和
(1)當(dāng)時(shí),;
當(dāng)時(shí),
檢驗(yàn)首項(xiàng)符合,所以數(shù)列的通項(xiàng)公式為.
(2)由(1)可得,記數(shù)列的前項(xiàng)和為,

 

故數(shù)列的前項(xiàng)和為項(xiàng)和 等差數(shù)列 等比數(shù)列 分組求和法
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在等差數(shù)列{an}中,a1+a3=8,且a4為a2和a9的等比中項(xiàng),求數(shù)列{an}的首項(xiàng)、公差及前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

為等差數(shù)列,是其前項(xiàng)和,且,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)等差數(shù)列的公差為,點(diǎn)在函數(shù)的圖象上().
(1)若,點(diǎn)在函數(shù)的圖象上,求數(shù)列的前項(xiàng)和;
(2)若,函數(shù)的圖象在點(diǎn)處的切線(xiàn)在軸上的截距為,求數(shù)列的前 項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,,則(   )
A.5B.8C.10D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若等差數(shù)列滿(mǎn)足,則當(dāng)     時(shí),的前項(xiàng)和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列{an}中a1=1,a2=2,當(dāng)整數(shù)n>1時(shí),Sn+1+Sn-1=2(Sn+S1)都成立,則S15=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,,猜想的表達(dá)式為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)是首項(xiàng)為,公差為的等差數(shù)列,為其前項(xiàng)和.若成等比數(shù)列,則的值為_(kāi)_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案