設(shè)m∈N*,F(xiàn)(m)表示log2m的整數(shù)部分,則F(210+1)+F(210+2)+F(210+3)+…+F(211)的值為


  1. A.
    10×210
  2. B.
    10×210+1
  3. C.
    10×210+2
  4. D.
    10×210-1
B
分析:由題意可得除最后一項(xiàng)外,每一項(xiàng)的值都等于10,而最后一項(xiàng)的值等于11,共有210 項(xiàng),由此求得這210 項(xiàng)的和.
解答:由題意知:F(210+1)+F(210+2)+F(210+3)+…+F(211
=10+10+10+…+10+(10+1)=10×210+1
故選B.
點(diǎn)評(píng):本題考察對(duì)數(shù)運(yùn)算性質(zhì)的應(yīng)用,要求對(duì)問題有較強(qiáng)的歸納分析能力和較好的運(yùn)算能力,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+ax2+bx+c的圖象如圖所示,且與直線y=0在原點(diǎn)處相切,此切線與函數(shù)圖象所圍區(qū)域的面積為
274

(1)求函數(shù)y=f(x)的解析式;
(2)設(shè)m>1,如果過點(diǎn)(m,n)可作函數(shù)y=f(x)的圖象的三條切線,求證:1-3m<n<f(m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•藍(lán)山縣模擬)設(shè)m∈N*,F(xiàn)(m)表示log2m的整數(shù)部分,則F(210+1)+F(210+2)+F(210+3)+…+F(211)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=x3+ax2+bx+c的圖象如圖所示,且與直線y=0在原點(diǎn)處相切,此切線與函數(shù)圖象所圍區(qū)域的面積為數(shù)學(xué)公式
(1)求函數(shù)y=f(x)的解析式;
(2)設(shè)m>1,如果過點(diǎn)(m,n)可作函數(shù)y=f(x)的圖象的三條切線,求證:1-3m<n<f(m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:

①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)函數(shù)f′(x)滿足0<f′(x)<1.

(1)判斷函數(shù)f(x)=x+sinx是否是集合M中的元素,并說明理由;

(2)集合M中的元素f(x)具有下列性質(zhì):

若f(x)的定義域?yàn)镮,則對(duì)于任意[m,n]I都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立.

    請(qǐng)利用這一性質(zhì)證明:方程f(x)-x=0有唯一的實(shí)數(shù)根;

(3)若存在實(shí)數(shù)x1,使得m中元素f(x)定義域中的任意實(shí)數(shù)a、b都有|a-x1|<1和|b-x1|<1成立.證明:|f(b)-f(a)|<2

查看答案和解析>>

同步練習(xí)冊(cè)答案