如圖,正方體ABCD-A1B1C1D1的棱長為2,動(dòng)點(diǎn)E、F在BC1上,動(dòng)點(diǎn)P、Q分別在AD1、CD上,若,,則四面體P-EFQ的體積(     )

A.與x、y都有關(guān)         B.與x有關(guān)、與y無關(guān)

C.與x、y都無關(guān)         D.與x無關(guān)、與y有關(guān)

 

 

【答案】

C

【解析】

試題分析:由題意得為點(diǎn)Q到平面PEF的距離),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092423580723153006/SYS201309242358314545280381_DA.files/image003.png">(為點(diǎn)P到直線EF的距離),為平行直線間的距離,即,又,所以為定值,即為點(diǎn)Q到平面的距離,也為定值,所以四面體P-EFQ的體積為定值,與x、y都無關(guān).

考點(diǎn):四面體的體積的求法

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為a,它的各個(gè)頂點(diǎn)都在球O的球面上,問球O的表面積.
(1) 如果球O和這個(gè)正方體的六個(gè)面都相切,則有S=
 

(2)如果球O和這個(gè)正方體的各條棱都相切,則有S=
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1和A1D1的中點(diǎn).證明:向量
A1B
、
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1棱長為8,E、F分別為AD1,CD1中點(diǎn),G、H分別為棱DA,DC上動(dòng)點(diǎn),且EH⊥FG.
(1)求GH長的取值范圍;
(2)當(dāng)GH取得最小值時(shí),求證:EH與FG共面;并求出此時(shí)EH與FG的交點(diǎn)P到直線B1B的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,若E、F、G分別為棱BC、C1C、B1C1的中點(diǎn),O1、O2分別為四邊形ADD1A1、A1B1C1D1的中心,則下列各組中的四個(gè)點(diǎn)不在同一個(gè)平面上的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點(diǎn),且BF=DE=C1G=C1H=
13
AB

(1)證明:直線EH與FG共面;
(2)若正方體的棱長為3,求幾何體GHC1-EFC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案