【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若對(duì)任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求實(shí)數(shù)的取值范圍.
【答案】(1)極大值0,極小值;(2).
【解析】
(1)當(dāng)時(shí),,然后利用導(dǎo)數(shù)得出其單調(diào)區(qū)間即可
(2),然后分,,三種情況討論.
(1)當(dāng)時(shí),,
且函數(shù)定義域?yàn)?/span>,所以,
令,得或.
,隨的變化如下表:
1 | 2 | ||||
+ | 0 | - | 0 | + | |
0 |
當(dāng)時(shí),函數(shù)取得極大值;
當(dāng)時(shí),函數(shù)取得極小值.
(2)由條件得,
當(dāng)時(shí),令有或.
①當(dāng)時(shí),函數(shù)在上單調(diào)遞增,顯然符合題意.
②當(dāng),即時(shí),函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減.
此時(shí)由題意知,只需,解得,
又,所以實(shí)數(shù)的取值范圍是.
③當(dāng),即時(shí),函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減,
對(duì)任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,
則,代入化簡(jiǎn)得(*).
記,令,恒成立,
故有,
∴時(shí),(*)式恒成立.
綜上,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)如圖,在多面體中,底面是邊長(zhǎng)為的的菱形, ,四邊形是矩形,平面平面, , 和分別是和的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界嚴(yán)重缺水的國(guó)家,城市缺水問(wèn)題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過(guò)的部分按平價(jià)收費(fèi),超過(guò)的部分按議價(jià)收費(fèi),為了了解全市民月用水量的分布情況,通過(guò)抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬(wàn),試估計(jì)全市有多少居民?并說(shuō)明理由;
(Ⅱ)若該市政府?dāng)M采取分層抽樣的方法在用水量噸數(shù)為和之間選取7戶(hù)居民作為議價(jià)水費(fèi)價(jià)格聽(tīng)證會(huì)的代表,并決定會(huì)后從這7戶(hù)家庭中按抽簽方式選出4戶(hù)頒發(fā)“低碳環(huán)保家庭”獎(jiǎng),設(shè)為用水量噸數(shù)在中的獲獎(jiǎng)的家庭數(shù),為用水量噸數(shù)在中的獲獎(jiǎng)家庭數(shù),記隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為比較甲,乙兩地某月時(shí)的氣溫,隨機(jī)選取該月中的天,將這天中時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:①甲地該月時(shí)的平均氣溫低于乙地該月時(shí)的平均氣溫;②甲地該月時(shí)的平均氣溫高于乙地該月時(shí)的平均氣溫;③甲地該月時(shí)的氣溫的中位數(shù)小于乙地該月時(shí)的氣溫的中位數(shù);④甲地該月時(shí)的氣溫的中位數(shù)大于乙地該月時(shí)的氣溫的中位數(shù).其中根據(jù)莖葉圖能得到的正確結(jié)論的編號(hào)為( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,∥,,是等邊三角形,側(cè)面底面,,,,點(diǎn)是棱上靠近點(diǎn)的一個(gè)三等分點(diǎn).
(1)求證:∥平面;
(2)設(shè)點(diǎn)是線(xiàn)段(含端點(diǎn))上的動(dòng)點(diǎn),若直線(xiàn)與底面所成的角的正弦值為,求線(xiàn)段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)令,討論的單調(diào)性并判斷有無(wú)極值,若有,求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中ABC—A1B1C1,ABAC,AB=3,AC=4,B1CAC1.
(1)求AA1的長(zhǎng);
(2)試判斷在側(cè)棱BB1上是否存在點(diǎn)P,使得直線(xiàn)PC與平面AA1C1C所成角和二面角B—A1C—A的大小相等,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了釋放學(xué)生壓力,某校高三年級(jí)一班進(jìn)行了一個(gè)投籃游戲,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪).在相同的條件下,每輪甲乙兩人站在同一位置上,甲先投,每人投一次籃,兩人有人命中,命中者得分,未命中者得分;兩人都命中或都未命中,兩人均得分.設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響.
(1)經(jīng)過(guò)輪投籃,記甲的得分為,求的分布列及期望;
(2)若經(jīng)過(guò)輪投籃,用表示第輪投籃后,甲的累計(jì)得分低于乙的累計(jì)得分的概率.
①求;
②規(guī)定,經(jīng)過(guò)計(jì)算機(jī)模擬計(jì)算可得,請(qǐng)根據(jù)①中值求出的值,并由此求出數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,設(shè)直線(xiàn)過(guò)橢圓的上頂點(diǎn)和右焦點(diǎn),坐標(biāo)原點(diǎn)到直線(xiàn)的距離為2.
(1)求橢圓的方程.
(2)過(guò)點(diǎn)且斜率不為零的直線(xiàn)交橢圓于,兩點(diǎn),在軸的正半軸上是否存在定點(diǎn),使得直線(xiàn),的斜率之積為非零的常數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com