滿足條件AB=2,AC=2BC的三角形ABC的面積最大值是
4
3
4
3
分析:設(shè)BC=x,根據(jù)面積公式用x和sinB表示出三角形的面積,再根據(jù)余弦定理用x表示出sinB,代入三角形的面積表達(dá)式,進(jìn)而得到關(guān)于x的三角形面積表達(dá)式,再根據(jù)x的范圍求得三角形面積的最大值.
解答:解:設(shè)BC=x,則AC=2x,由余弦定理可得 cosB=
x2+4-4x2
4x
=
4-3x2
4x

由于三角形ABC的面積為
1
2
•2•x•sinB=x
1-cos2B
=
x2[1-(
4-3x2
4x
)
2
]
=
-9x4+40x2-16
16

=
-9x4+40x2+16
4

再由三角形任意兩邊之和大于第三邊可得
x+2x>2
x+2>2x
,解得
2
3
<x<2,故
4
9
<x2<4.
再利用二次函數(shù)的性質(zhì)可得,當(dāng)x2=
20
9
時(shí),函數(shù)-9x4+40x2+16取得最大值為 
256
9
,
-9x4+40x2+16
4
的最大值為
4
3

故答案為
4
3
點(diǎn)評(píng):本題主要考查了余弦定理和面積公式在解三角形中的應(yīng)用.當(dāng)涉及最值問(wèn)題時(shí),可考慮用函數(shù)的單調(diào)性和定義域等問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a、b、c滿足條件ab+bc+ca=1,給出下列不等式:①a2b2+b2c2+c2a2≥1;②
1
abc
≥2
3
;③(a+b+c)2>2;④a2bc+ab2c+abc2
1
3
;其中一定成立的式子有
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2004•上海模擬)正方形ABCD中,AB=1,分別以A、C為圓心作兩個(gè)半徑為R、r(R>r)的圓,當(dāng)R、r滿足條件
1
1
時(shí),⊙A與⊙C有2個(gè)交點(diǎn).(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直三棱柱ABC—A1B1C1中,AB=AC,AA1=2AB,∠BAC=90°.

(1)在側(cè)棱BB1上找一點(diǎn)D,使得BC1⊥AD,并說(shuō)明理由;

(2)若點(diǎn)D滿足條件(1),求二面角A-DC1-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直三棱柱ABC—A1B1C1中,AB=AC,AA1=2AB,∠BAC=90°.

(1)在側(cè)棱BB1上找一點(diǎn)D,使得BC1⊥AD,并說(shuō)明理由;

(2)若點(diǎn)D滿足條件(1),求二面角A-DC1-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2003-2004學(xué)年上海市民辦中學(xué)八校高三(下)3月聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題

正方形ABCD中,AB=1,分別以A、C為圓心作兩個(gè)半徑為R、r(R>r)的圓,當(dāng)R、r滿足條件11時(shí),⊙A與⊙C有2個(gè)交點(diǎn).( )
A.R+r>
B.R-r<<R+r
C.R-r>
D.0<R-r<

查看答案和解析>>

同步練習(xí)冊(cè)答案