長(zhǎng)方體三個(gè)面的面對(duì)角線(xiàn)的長(zhǎng)度分別為3,3,
14
那么它的外接球的表面積為( 。
A、8πB、16π
C、32πD、64π
考點(diǎn):球的體積和表面積
專(zhuān)題:
分析:先求出長(zhǎng)方體的棱長(zhǎng),再求出它的體對(duì)角線(xiàn)即求出外接球的直徑,由此據(jù)公式即可球的表面積,本題采用了設(shè)而不求的技巧,沒(méi)有解棱的長(zhǎng)度,直接整體代換求出了體對(duì)角線(xiàn)的長(zhǎng)度.
解答: 解:長(zhǎng)方體一頂點(diǎn)出發(fā)的三條棱長(zhǎng)的長(zhǎng)分別為a,b,c,
不妨令a2+b2=9,b2+c2=9,c2+a2=14,
得a2+b2+c2=16.
于是,球的直徑2R滿(mǎn)足4R2=(2R)2=a2+b2+c2=16.
故外接球的表面積為S=4πR2=16π.
故選:B.
點(diǎn)評(píng):本題考查長(zhǎng)方體的幾何性質(zhì),長(zhǎng)方體與其外接球的關(guān)系,以及球的表面積公式,訓(xùn)練了空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+ax+21
x+1
 (a∈R)
,若對(duì)于任意的x∈N+,f(x)≥3恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,E是棱CC1的中點(diǎn),F(xiàn)是側(cè)面BCC1B1內(nèi)的動(dòng)點(diǎn),且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方體ABCD-A1B1C1D1中,直線(xiàn)DB1與平面ABCD所成角的正弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+
π
2
)(ω>0)
的最小正周期為π,則f(x)( 。
A、在(0,
π
2
)
單調(diào)遞減
B、在(
π
4
4
)
單調(diào)遞減
C、在(0,
π
2
)
單調(diào)遞增
D、在(
π
4
,
4
)
單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:-4<x-a<4,命題q:(x-1)(x-3)<0,且q是p的充分而不必要條件,則a的取值范圍是( 。
A、[-1,5]
B、[-1,5)
C、(-1,5]
D、(-1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為
3
,以頂點(diǎn)A為球心,2為半徑作一個(gè)球,則圖中球面與正方體的表面相交所得到的兩段弧長(zhǎng)之和等于(  )
A、
6
B、
3
C、π
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線(xiàn)F:
x2
a2
-
y2
b2
=1(a>0,b>0),F1,F2
為雙曲線(xiàn)F的焦點(diǎn).若雙曲線(xiàn)F存在點(diǎn)M,滿(mǎn)足
1
2
|MF1|=|MO|=|MF2|
(O為原點(diǎn)),則雙曲線(xiàn)F的離心率為(  )
A、
3
B、
5
C、
6
D、
5
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:
7
5
<1+
1
22
+
1
32
+
1
42
+
1
52
+
1
62
+
1
72
+
1
82
+
1
92
17
9

查看答案和解析>>

同步練習(xí)冊(cè)答案