將直線l:y=2x按向量
a
=(3,0)平移得到直線l′,則l′的方程為( 。
A、y=2x-3
B、y=2x+3
C、y=2(x-3)
D、y=2(x+3)
考點(diǎn):平面向量坐標(biāo)表示的應(yīng)用
專題:平面向量及應(yīng)用
分析:根據(jù)題意可知直線l′的斜率為2,且過(guò)(3,0)點(diǎn),利用點(diǎn)斜式,可得方程.
解答: 解:根據(jù)題意可知直線l′的斜率為2,且過(guò)(3,0)點(diǎn),則其方程為y=2(x-3).
故選C.
點(diǎn)評(píng):本題考查向量的平移,考查直線方程,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+3)=f(x).當(dāng)0≤x≤1時(shí)有f(x)=2x,則f(8.5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(
3
sin 
πx
4
,sin 
πx
4
)
b
=(sin 
πx
4
,cos 
πx
4
)
,函數(shù)f(x)=
a
b
-
3
2

(1)求y=f(x)的對(duì)稱軸方程;
(2)求f(1)+f(2)+f(3)+…+f(2012)的值;
(3)在△ABC中,若A<B,且f(
4A
π
)
=f(
4B
π
)=
1
2
,求
sin B
sin C
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,GH是一條東西方向的公路,現(xiàn)準(zhǔn)備在點(diǎn)B的正北方向的點(diǎn)A處建一倉(cāng)庫(kù),設(shè)AB=y千米,并在公路旁邊建造邊長(zhǎng)為x千米的正方形無(wú)頂中轉(zhuǎn)站CDEF(其中邊EF在公路GH上),現(xiàn)向公路和中轉(zhuǎn)站分別修兩條簡(jiǎn)易公路AB,AC,已知AB=AC+1,且∠ABC=60°.
(1)求y關(guān)于x的函數(shù)解析式;
(2)如果中轉(zhuǎn)站四周圍墻造價(jià)為l0萬(wàn)元/千米,公路造價(jià)為30萬(wàn)元/千米,問(wèn)x取何值時(shí),建中轉(zhuǎn)站和道路總造價(jià)M最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
-2x+1
x2
,x>0
1
x
,x<0
,則f(x)>-1的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐E-ABCD中,底面ABCD是矩形且AB=2BC=2,側(cè)面△ADE是正三角形且垂直于底面ABCD,F(xiàn)是AB的中點(diǎn),AD的中點(diǎn)為O,求:
(1)異面直線AE與CF所成的角的余弦值;
(2)點(diǎn)O到平面EFC的距離;
(3)二面角E-FC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱柱ABC-A1B1C1的底面邊長(zhǎng)與高相等,P為棱CC1上任一點(diǎn),截面PAB把棱柱分成兩部分的體積比為5:1,則二面角P-AB-C的度數(shù)為(  )
A、30°B、45°
C、60°D、75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

《選修4-4:坐標(biāo)系與參數(shù)方程》
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建坐標(biāo)系,已知曲線C:ρsin2θ=2acosθ(a>0),已知過(guò)點(diǎn)P(-2,-4)的直線l的參數(shù)方程為
x=-2+
2
2
t
y=-4+
2
2
t
(t為參數(shù)),直線 與曲線C分別交于M,N.
(1)寫出曲線C和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足:
x≥1
y≤2
x-y≤0
則(x-3)2+y2的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案