已知圓臺(tái)的上、下底面半徑分別是2、5,且側(cè)面面積等于兩底面面積之和,求該圓臺(tái)的母線長及體積大。
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專題:空間位置關(guān)系與距離
分析:設(shè)圓臺(tái)的母線長為l,求出圓臺(tái)的上底面面積,圓臺(tái)的下底面面積,利用圓臺(tái)的底面面積等于圓臺(tái)的側(cè)面積求出圓臺(tái)的母線,求出高,即可求解圓臺(tái)的體積.
解答: (本小題滿分8分)
解:設(shè)圓臺(tái)的母線長為l,則圓臺(tái)的上底面面積為S=π•22=4π,圓臺(tái)的下底面面積為S=π•52=25π,
所以圓臺(tái)的底面面積為S=S+S=29π
又圓臺(tái)的側(cè)面積S側(cè)=π(2+5)l=7πl(wèi),于是7πl(wèi)=29π
l=
29
7
為所求.
該圓臺(tái)的高為
(
29
7
)
2
-32
=
20
7
,于是該圓臺(tái)的體積為V=
1
3
πh(S+S+
SS
)
=
260π
7
點(diǎn)評(píng):本題考查圓臺(tái)的表面積與體積的計(jì)算公式的應(yīng)用,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα-cosα=-
2
,則tanα=(  )
A、-1
B、1
C、-
2
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若
OB
=a100
OA
+a101
OC
,且A、B、C三點(diǎn)共線(該直線不過點(diǎn)O),則S200等于( 。
A、100B、101
C、200D、201

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
2
x
,g(x)=a(2-lnx).若曲線y=f(x)與曲線y=g(x)在x=1處的切線斜率相同,求a的值,并判斷兩條切線是否為同一條直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:3x-y-3=0,求:
(1)過點(diǎn)A(3,2)且與直線l垂直的直線方程;
(2)點(diǎn)B(4,5)關(guān)于直線l的對(duì)稱點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD和側(cè)面BCC1B1都是矩形,E是CD的中點(diǎn),D1E⊥CD,AB=2BC=2.
(1)求證:BC⊥D1E;
(2)若AA1=
2
,求三棱錐D1-B1CB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,已知AC=BC=AA1=a,∠ACB=90°,D是A1B1中點(diǎn).
(1)求證:C1D⊥平面A1B1BA;
(2)請(qǐng)問,當(dāng)點(diǎn)F在BB1上什么位置時(shí),會(huì)使得AB1⊥平面C1DF?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
1
2
x2
-(1+a)x.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥0對(duì)定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)證明:對(duì)于任意不小于2的正整數(shù)n,不等式
1
ln2
+
1
ln3
…+
1
lnn
>1-
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

沿著圓柱的一條母線將圓柱剪開,可將側(cè)面展到一個(gè)平面上,所得的矩形稱為圓柱的側(cè)面展開圖,其中矩形長與寬分別是圓柱的底面圓周長和高(母線長),所以圓柱的側(cè)面積S=2πrl,其中r為圓柱底面圓半徑,l為母線長,現(xiàn)已知一個(gè)圓錐的底面半徑為R,高為H,在其中有一個(gè)高為x的內(nèi)接圓柱.
(1)求圓柱的側(cè)面積;
(2)x為何值時(shí),圓柱的側(cè)面積最大?

查看答案和解析>>

同步練習(xí)冊答案