11.若點(diǎn)(a,b)在函數(shù)f(x)=lnx的圖象上,則下列點(diǎn)中不在函數(shù)f(x)圖象上的是( 。
A.($\frac{1}{a}$,-b)B.(a+e,1+b)C.($\frac{e}{a}$,1-b)D.(a2,2b)

分析 利用點(diǎn)在曲線上,列出方程,利用對(duì)數(shù)的運(yùn)算法則化簡(jiǎn),判斷選項(xiàng)即可.

解答 解:因?yàn)椋╝,b)在f(x)=lnx圖象上,
所以b=lna,所以-b=ln$\frac{1}{a}$,1-b=ln$\frac{e}{a}$,2b=2lna=lna2,
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)與方程的應(yīng)用,對(duì)數(shù)的運(yùn)算法則的應(yīng)用,考查計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$y=\frac{1}{{\sqrt{x}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.RB.(-∞,0)∪(0,+∞)C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.體積為$\frac{32π}{3}$的球有一個(gè)內(nèi)接正三棱錐P-ABC,PQ是球的直徑,∠APQ=60°,則三棱錐P-ABC的體積為( 。
A.$\frac{27\sqrt{3}}{4}$B.$\frac{9\sqrt{3}}{4}$C.$\frac{3\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.不等式$\frac{5}{x+2}≥1$的解集為( 。
A.(-∞,3)B.(-2,3]C.(-∞,-2)∪[3,+∞)D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.${(x+\frac{1}{x})^9}$展開式中的第四項(xiàng)是( 。
A.56x3B.84x3C.56x4D.84x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l:y+2=0和圓C:x2+y2-2y=0,動(dòng)圓M與l相切,而且與C內(nèi)切.求當(dāng)M的圓心距直線g:x-y-2=0最近時(shí),M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)是偶函數(shù)的是(  )
①f(x)=lg|x|;②f(x)=ex+e-x;③f(x)=x2(x∈N);④f(x)=x-$\sqrt{{x}^{2}}$.
A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.命題p:?x,y∈R,x2+y2≥0,則命題p的否定為( 。
A.?x,y∈R,x2+y2<0B.?x,y∈R,x2+y2≤0
C.?x0,y0∈R,x02+y02≤0D.?x0,y0∈R,x02+y02<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB⊥BC,AB=6,BC=8,AA1=5,則該幾何體的表面積是( 。
A.216B.168C.144D.120

查看答案和解析>>

同步練習(xí)冊(cè)答案