設(shè){an}是公比為正數(shù)的等比數(shù)列,若a3=4,a7=64,則a8=(  )
A、255B、256
C、127D、128
考點:等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)數(shù)列{an}的公比為q,由等比數(shù)列的通項公式可得q4=16,結(jié)合題意解出q的值,即可求出a8
解答: 解:設(shè)數(shù)列{an}的公比為q,則
∵a3=4,a7=64,∴a1q2=4,a1q6=64
∴q4=16,可得q=2(舍負(fù)),
∴a8=a3q5=4•25=128.
故選:D.
點評:本題給出等比數(shù)列的第3項和第7項,求它的公比.著重考查了等比數(shù)列的定義和通項公式等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在實數(shù)集R上的函數(shù)f(x)滿足f(x)=-f(x+1),當(dāng)x∈[2,3]時,f(x)=x,則x∈[-3,-2]時,f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(a-3)x,x≤4
2x+1,x>4
,若數(shù)列an=f(x)是遞增數(shù)列,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1-2x)n展開式中,奇數(shù)項的二項式系數(shù)之和為64,則(1-2x)n(1+x)展開式中含x2項的系數(shù)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合全集U={-1,0,1,2,3,4},A={1,2},B={3,4},則(∁UA)∩B=( 。
A、{1,2}
B、{3,4}
C、{-1,0,3,4}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩直線3x+y-3=0與ax+2y-1=0垂直,則a=( 。
A、-6
B、6
C、-
2
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x-1)2+(y+3)2=2的圓心和半徑分別為( 。
A、(-1,3),2
B、(1,-3),
2
C、(1,-3),2
D、(-1,3),
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,Sn為其前n項和,若S21=S4000,O為坐標(biāo)原點,點P(2,an)、Q(2011,a2011),則
OP
OQ
=( 。
A、4022B、2011
C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某聯(lián)歡晚會舉行抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為
2
3
,中獎可以獲得2分;方案乙的中獎率為P0(0<P0<1),中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分?jǐn)?shù)兌換獎品.
(Ⅰ)張三選擇方案甲抽獎,李四選擇方案乙抽獎,記他們的累計得分為X,若X≤3的概率為
7
9
,求P0;
(Ⅱ)若張三、李四兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學(xué)期望較大?

查看答案和解析>>

同步練習(xí)冊答案