(本小題滿分12分)
已知函數(shù)
(1)求它的定義域,值域和單調(diào)區(qū)間;
(2)判斷它的奇偶性和周期性。

(1) ,的單調(diào)遞減區(qū)間為
;同理可得單調(diào)遞增區(qū)間為
(2) 是周期函數(shù),且最小正周期為,是非奇非偶函數(shù)

解析試題分析:解:由可得
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/7/xsuls1.png" style="vertical-align:middle;" /> 
可得,故的單調(diào)遞減區(qū)間為
;同理可得單調(diào)遞增區(qū)間為
(2)因沒有意義
是非奇非偶函數(shù)
是周期函數(shù),且最小正周期為,可知是周期函數(shù),且最小正周期為
考點(diǎn):本試題考查了函數(shù)的性質(zhì)。
點(diǎn)評:對于函數(shù)的奇偶性和單調(diào)性的判定,一般運(yùn)用定義法來判定,同時(shí)能結(jié)合三角函數(shù)的單調(diào)區(qū)間來求解,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b7/0/illo52.png" style="vertical-align:middle;" />,對于任意的,都有,且當(dāng)時(shí),.
(1)求證:為奇函數(shù);   (2)求證:上的減函數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù),且
(1)求
(2)判斷的奇偶性;
(3)試判斷上的單調(diào)性,并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 為常數(shù),
(1)當(dāng)時(shí),求函數(shù)處的切線方程;
(2)當(dāng)處取得極值時(shí),若關(guān)于的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)若對任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
(1)已知函數(shù)
(2)已知函數(shù)分別由下表給出:


1
2
 
3
6

1
2

2
1
  
用分段函數(shù)表示,并畫出函數(shù)的圖象。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)滿足.
(Ⅰ)求的解析式及其定義域;
(Ⅱ)寫出的單調(diào)區(qū)間并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),其中為常數(shù)
(1)為奇函數(shù),試確定的值
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊答案