精英家教網 > 高中數學 > 題目詳情

【題目】甲,乙兩人玩摸球游戲,每兩局為一輪,每局游戲的規(guī)則如下:甲,乙兩人均從裝有4只紅球、1只黑球的袋中輪流不放回摸取1只球,摸到黑球的人獲勝,并結束該局.

(1)若在一局中甲先摸,求甲在該局獲勝的概率;

(2)若在一輪游戲中約定:第一局甲先摸,第二局乙先摸,每一局先摸并獲勝的人得1分,后摸井獲勝的人得2分,未獲勝的人得0分,求此輪游戲中甲得分X的概率分布及數學期望.

【答案】(1) (2)見解析

【解析】

1)利用古典概型的概率公式求得甲在該局獲勝的概率值;

2)由題意知隨機變量X的可能取值,求出對應的概率值,寫出分布列,計算數學期望值.

(1)記“一局中甲先摸,甲在該局獲勝”為事件A,共有三種情況:黑球在1號、3 號或5號位置,共有3種,而黑球的位置有5種.

所以.

答:甲在該局獲勝的概率為.

(2)隨機變量

,

,

,

所以X的概率分布為:

X

0

1

2

3

P

數學期望

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為節(jié)能環(huán)保,推進新能源汽車推廣和應用,對購買純電動汽車的用戶進行財政補貼. 某地補貼政策如下(表示純電續(xù)航里程):

三個純電動汽車4s店分別銷售不同品牌的純電動汽車,在一個月內它們的銷售情況如下: (每位客戶只能購買一輛純電動汽車

(Ⅰ)從上述購買純電動汽車的客戶中隨機選一人,求此人購買的是店純電動汽車且享受補貼不低于3.5萬元的概率;

(Ⅱ)從購買店純電動汽車的客戶中按分層抽樣的方法隨機選6人,再從這6人中隨機選2人,進行使用滿意度的調查,求這兩人享受補貼恰好相同的概率;

(Ⅲ)分別用表示購買店和店純電動汽車客戶享受補貼的平均值,比較的大小.(只需寫出結論)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】研究變量得到一組樣本數據,進行回歸分析,有以下結論

①殘差圖中殘差點所在的水平帶狀區(qū)域越窄,則回歸方程的預報精確度越高;

②用相關指數來刻畫回歸效果,越小說明擬合效果越好;

③在回歸直線方程中,當變量每增加1個單位時,變量就增加2個單位

④若變量之間的相關系數為,則變量之間的負相關很強

以上正確說法的個數是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求曲線在點處的切線方程;

(2)討論的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,A是橢圓的左頂點,點P,Q在橢圓上且均在x軸上方.

(1)若直線AP與OP垂直,求點P的坐標;

(2)若直線AP,AQ的斜率之積為,求直線PQ的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

時,求函數的單調增區(qū)間;

若函數上是增函數,求實數a的取值范圍;

,且對任意,,都有,求實數a的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會影響生二孩的意愿,現隨機抽取某地200戶家庭進行調查統(tǒng)計.200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數為60.

1)完成下列列聯表:

生二孩

不生二孩

合計

頭胎為女孩

60

頭胎為男孩

合計

200

2)判斷能否有的把握認為是否生二孩與頭胎的男女情況有關;附:

0,15

0.05

0.01

0.0012.0

k

2.072

3.841

6.635

10.828

(其中).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據以往的經驗,某工程施工期間的降水量(單位:)對工期的影響如下表:

降水量

工期延誤天數

歷年氣象資料表明,該工程施工期間降水量小于、的概率分別為、,求:

1)在降水量至少是的條件下,工期延誤不超過天的概率;

2)工期延誤天數的均值與方差.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,圖2是某城市1月至8月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級, 一級空氣質量最好,一級和二級都是質量合格天氣,下面四種說法正確的是( )

①1月至8月空氣合格天數超過20天的月份有5個

②第二季度與第一季度相比,空氣達標天數的比重下降了

③8月是空氣質量最好的一個月

④6月份的空氣質量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

同步練習冊答案