【題目】在等比數(shù)列{an}中,a2=3,a5=81. (Ⅰ)求an;
(Ⅱ)設(shè)bn=log3an , 求數(shù)列{bn}的前n項和Sn .
【答案】解:(Ⅰ)設(shè)等比數(shù)列{an}的公比為q, 由a2=3,a5=81,得
,解得 .
∴ ;
(Ⅱ)∵ ,bn=log3an ,
∴ .
則數(shù)列{bn}的首項為b1=0,
由bn﹣bn﹣1=n﹣1﹣(n﹣2)=1(n≥2),
可知數(shù)列{bn}是以1為公差的等差數(shù)列.
∴
【解析】(Ⅰ)設(shè)出等比數(shù)列的首項和公比,由已知列式求解首項和公比,則其通項公式可求;(Ⅱ)把(Ⅰ)中求得的an代入bn=log3an , 得到數(shù)列{bn}的通項公式,由此得到數(shù)列{bn}是以0為首項,以1為公差的等差數(shù)列,由等差數(shù)列的前n項和公式得答案.
【考點精析】解答此題的關(guān)鍵在于理解等差數(shù)列的前n項和公式的相關(guān)知識,掌握前n項和公式:,以及對等比數(shù)列的通項公式(及其變式)的理解,了解通項公式:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體中,四邊形是菱形, , 相交于, ,點在平面上的射影恰好是線段的中點.
(Ⅰ)求證: 平面;
(Ⅱ)若直線與平面所成的角為,求平面與平面所成角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OPQ是半徑為1,圓心角為θ的扇形,A是扇形弧PQ上的動點,AB∥OQ,OP與AB交于點B,AC∥OP,OQ與AC交于點C.
(1)當(dāng)θ=時,求點A的位置,使矩形ABOC的面積最大,并求出這個最大面積;
(2)當(dāng)θ=時,求點A的位置,使平行四邊形ABOC的面積最大,并求出這個最大面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sin ,sin ), =(cos ,cos ),且向量 與向量 共線.
(1)求證:sin( ﹣ )=0;
(2)若記函數(shù)f(x)=sin( ﹣ ),求函數(shù)f(x)的對稱軸方程;
(3)求f(1)+f(2)+f(3)+…+f(2013)的值;
(4)如果已知角0<A<B<π,且A+B+C=π,滿足f( )=f( )= ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔(dān)心賽事費用超支而相繼退出。某機構(gòu)為調(diào)查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計如下:
(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認(rèn)為不同年齡與支持申辦奧運無關(guān)?
(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機抽取3人,求至多有1位教師的概率.
附: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在上的最小值;
(2)若關(guān)于的不等式只有兩個整數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)階段全國多地空氣質(zhì)量指數(shù)“爆表”.為探究車流量與濃度是否相關(guān),現(xiàn)對北方某中心城市的車流量最大的地區(qū)進行檢測,現(xiàn)采集到月某天個不同時段車流量與濃度的數(shù)據(jù),如下表:
車流量(萬輛/小時) | |||||||
濃度 (微克/立方米) |
(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)規(guī)定當(dāng)濃度平均值在,空氣質(zhì)量等級為優(yōu);當(dāng)濃度平均值在,空氣質(zhì)量等級為良;為使該城市空氣質(zhì)量為優(yōu)和良,利用該回歸方程,預(yù)測要將車流量控制在每小時多少萬輛內(nèi)(結(jié)果以萬輛做單位,保留整數(shù)).
附:回歸直線方程: ,其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸,生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸。銷售每噸甲產(chǎn)品可獲得利潤5萬元,每噸乙產(chǎn)品可獲得利潤3萬元,該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸,那么該企業(yè)可獲得最大利潤是___________萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時,解不等式;
(2)若關(guān)于的方程的解集中恰好有一個元素,求的取值范圍;
(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com