函數(shù)y=lg(sin2x)+
4-x2
的定義域?yàn)?!--BA-->
(0,
π
2
(0,
π
2
分析:利用對數(shù)的真數(shù)大于0,偶次方跟大于等于0,然后求出交集即可.
解答:解:要使函數(shù)y=lg(sin2x)+
4-x2
有意義,必須
sin2x>0
4-x2≥0
解得0<x<
π
2
,-2≤x<-
π
2

故答案為:(0,
π
2
)∪[-2,-
π
2
).
點(diǎn)評:本題是中檔題,考查對數(shù)函數(shù)三角函數(shù)的定義域,注意交集的求法,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=lg(sin(2x-
π4
))
的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)y=lg|x-3|和y=sin
πx
2
(-4≤x≤10),下列說法正確的是( 。
(1)函數(shù)y=lg|x-3|的圖象關(guān)于直線x=-3對稱;
(2)y=sin
πx
2
(-4≤x≤10)的圖象關(guān)于直線x=3對稱;
(3)兩函數(shù)的圖象一共有10個(gè)交點(diǎn);
(4)兩函數(shù)圖象的所有交點(diǎn)的橫坐標(biāo)之和等于30;
(5)兩函數(shù)圖象的所有交點(diǎn)的橫坐標(biāo)之和等于24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①y=tanx在其定義域上是增函數(shù);
②函數(shù)y=|sin(2x+
π
3
)|
的最小正周期是
π
2

p:
π
4
<α<
π
2
;q:f(x)=logtanαx在(0,+∞)內(nèi)是增函數(shù),則p是q的充分非必要條件;
④函數(shù)y=lg(sinx+
sin2x+1
)
的奇偶性不能確定.
其中正確命題的序號(hào)是
②③
②③
(把你認(rèn)為的正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①“k=1”是“函數(shù)y=cos2kx-sin2kx的最小正周期為π”的充要條件;
②函數(shù)y=sin(2x-
π
6
)的圖象沿x軸向右平移
π
6
個(gè)單位所得的函數(shù)表達(dá)式是y=cos2x;
③函數(shù)y=lg(ax2-2ax+1)的定義域是R,則實(shí)數(shù)a的取值范圍是(0,1);
④設(shè)O是△ABC內(nèi)部一點(diǎn),且
OA
+
OC
=-2
OB
,則△AOB與△AOC的面積之比為1:2;
其中真命題的序號(hào)是
(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①y=tanx在其定義域上是增函數(shù);
②函數(shù)y=|sin(2x+
π
3
)|
的最小正周期是
π
2
;
p:
π
4
<α<
π
2
;q:f(x)=logtanαx在(0,+∞)內(nèi)是增函數(shù),則p是q的充分非必要條件;
④函數(shù)y=lg(sinx+
sin2x+1
)
的奇偶性不能確定.
其中正確命題的序號(hào)是(  )

查看答案和解析>>

同步練習(xí)冊答案