【題目】在如圖所示的四棱錐中,四邊形為平行四邊形,為邊長為2的等邊三角形,,點,分別為,的中點,是異面直線和的公垂線.
(1)證明:平面平面;
(2)記的重心為,求直線與平面所成角的正弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)為的中點,利用等邊三角形的性質(zhì)可得,根據(jù)是異面直線與的公垂線,可得.可得平面.進而得出:平面平面.
(2)根據(jù),為中點,可得,又是異面直線與的公垂線,可得,可得:平面.建立如圖所示的空間直角坐標系.設(shè)平面的一個法向量為,可得,由,,的坐標可得的重心.設(shè)直線與平面所成角為,則,.
解:(1)證明:因為為的中點,所以在等邊中,
又因為是異面直線和的公垂線,所以
又因為,平面,所以平面
因為平面,所以平面平面
(2)因為、為中點,所以,又因為是異面直線和的公垂線,
所以,,所以為等腰直角三角形
連接,,
因為,平面,平面平面且平面平面
所以平面
因此,以為原點,分別以、、所在的直線為、、軸建系如圖所示:
則,,,
因為四邊形為平行四邊形,設(shè)
因為,所以
所以
設(shè)面的一個法向量為
,
由
令,則,,所以
因為,,,
所以的重心為的坐標為,
設(shè)直線與平面所成角為,則
科目:高中數(shù)學 來源: 題型:
【題目】2019年,河南省鄭州市的房價依舊是鄭州市民關(guān)心的話題.總體來說,二手房房價有所下降,相比二手房而言,新房市場依然強勁,價格持續(xù)升高.已知銷售人員主要靠售房提成領(lǐng)取工資.現(xiàn)統(tǒng)計鄭州市某新房銷售人員一年的工資情況的結(jié)果如圖所示,若近幾年來該銷售人員每年的工資總體情況基本穩(wěn)定,則下列說法正確的是( )
A.月工資增長率最高的為8月份
B.該銷售人員一年有6個月的工資超過4000元
C.由此圖可以估計,該銷售人員2020年6,7,8月的平均工資將會超過5000元
D.該銷售人員這一年中的最低月工資為1900元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c,d∈R,矩陣A= 的逆矩陣A-1=.若曲線C在矩陣A對應(yīng)的變換作用下得到直線y=2x+1,求曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】古希臘數(shù)學家阿波羅尼奧斯發(fā)現(xiàn):平面上到兩定點,距離之比為常數(shù)且的點的軌跡是一個圓心在直線上的圓,該圓簡稱為阿氏圓.根據(jù)以上信息,解決下面的問題:如圖,在長方體中,,點在棱上,,動點滿足.若點在平面內(nèi)運動,則點所形成的阿氏圓的半徑為________;若點在長方體內(nèi)部運動,為棱的中點,為的中點,則三棱錐的體積的最小值為___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班主任利用周末時間對該班級年最后一次月考的語文作文分數(shù)進行統(tǒng)計,發(fā)現(xiàn)分數(shù)都位于之間,現(xiàn)將所有分數(shù)情況分為、、、、、、共七組,其頻率分布直方圖如圖所示,已知.
(1)求頻率分布直方圖中、的值;
(2)求該班級這次月考語文作文分數(shù)的平均數(shù)和中位數(shù).(每組數(shù)據(jù)用該組區(qū)間中點值作為代表)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com