精英家教網 > 高中數學 > 題目詳情

已知函數

  (1)判斷f(x)的奇偶性; (2)解關于x的不等式

(Ⅰ) 為奇函數(Ⅱ)   


解析:

:(1)設 

            …………(3分)

       設

        =    為奇函數   ……(7分)

   (2)由  …(8分)   

 得  …(10分) 故不等式的解集為 (14分)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網精英家教網(理)已知函數f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調遞減;
(3)如圖給出的是與函數f(x)相關的一個程序框圖,試構造一個公差不為零的等差數列
{an},使得該程序能正常運行且輸出的結果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標系中,方程為x2+y2+Dx+Ey+F=0的圓M的內接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點O、G、H是否共線,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•江西)若函數h(x)滿足
①h(0)=1,h(1)=0;
②對任意a∈[0,1],有h(h(a))=a;
③在(0,1)上單調遞減.則稱h(x)為補函數.已知函數h(x)=(
1-xp
1+λxp
)
1
p
(λ>-1,p>0)
(1)判函數h(x)是否為補函數,并證明你的結論;
(2)若存在m∈[0,1],使得h(m)=m,若m是函數h(x)的中介元,記p=
1
n
(n∈N+)時h(x)的中介元為xn,且Sn=
n
i=1
xi
,若對任意的n∈N+,都有Sn
1
2
,求λ的取值范圍;
(3)當λ=0,x∈(0,1)時,函數y=h(x)的圖象總在直線y=1-x的上方,求P的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數學(江西卷解析版) 題型:解答題

若函數h(x)滿足

(1)h(0)=1,h(1)=0;

(2)對任意,有h(h(a))=a;

(3)在(0,1)上單調遞減。則稱h(x)為補函數。已知函數

(1)判函數h(x)是否為補函數,并證明你的結論;

(2)若存在,使得h(m)=m,若m是函數h(x)的中介元,記時h(x)的中介元為xn,且,若對任意的,都有Sn< ,求的取值范圍;

(3)當=0,時,函數y= h(x)的圖像總在直線y=1-x的上方,求P的取值范圍。

 

查看答案和解析>>

科目:高中數學 來源:2012年江西省高考數學試卷(理科)(解析版) 題型:解答題

若函數h(x)滿足
①h(0)=1,h(1)=0;
②對任意a∈[0,1],有h(h(a))=a;
③在(0,1)上單調遞減.則稱h(x)為補函數.已知函數h(x)=(λ>-1,p>0)
(1)判函數h(x)是否為補函數,并證明你的結論;
(2)若存在m∈[0,1],使得h(m)=m,若m是函數h(x)的中介元,記p=(n∈N+)時h(x)的中介元為xn,且Sn=,若對任意的n∈N+,都有Sn,求λ的取值范圍;
(3)當λ=0,x∈(0,1)時,函數y=h(x)的圖象總在直線y=1-x的上方,求P的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011年上海市普陀區(qū)高考數學二模試卷(文理合卷)(解析版) 題型:解答題

(理)已知函數
(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調遞減;
(3)如圖給出的是與函數f(x)相關的一個程序框圖,試構造一個公差不為零的等差數列
{an},使得該程序能正常運行且輸出的結果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標系中,方程為x2+y2+Dx+Ey+F=0的圓M的內接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且,求D2+E2-4F的值;
(3)設四邊形ABCD的一條邊CD的中點為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點O、G、H是否共線,并說明理由.

查看答案和解析>>

同步練習冊答案