如圖,在三棱錐P-ABC中,除棱PC外,其余棱均等長,M為棱AB的中點(diǎn),O為線段MC上靠近點(diǎn)M的三等分點(diǎn).
(1)若PO⊥MC,求證:PO⊥平面ABC;
(2)試在平面PAB上確定一點(diǎn)Q,使得OQ∥平面PAC,且OQ∥平面PBC,并給出證明.
考點(diǎn):直線與平面垂直的判定,直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:(1)由已知條件推導(dǎo)出CM⊥AB,PM⊥AB,從而AB⊥平面PMC,進(jìn)而AB⊥PO.又PO⊥MC,由此能證明PO⊥平面ABC.
(2)Q為線段MP上靠近M點(diǎn)的三等分點(diǎn)時(shí),OQ∥平面PAC,且OQ∥平面PBC,利用平行線等分線段成比例性質(zhì)進(jìn)行證明.
解答: (1)證明:由題意得:O為△ABC的中心,則CM⊥AB,
∵M(jìn)為棱AB的中點(diǎn),PA=PB,∴PM⊥AB,…(2分)
又PM∩CM=M,∴AB⊥平面PMC,…(4分)
又PO?平面PMC,∴AB⊥PO.
又PO⊥MC,MC∩AB=M,
∴PO⊥平面ABC…(7分)
(2)解:∵O為線段MC上靠近點(diǎn)M的三等分點(diǎn),
∴Q為線段MP上靠近M點(diǎn)的三等分點(diǎn)時(shí),
OQ∥平面PAC,且OQ∥平面PBC…(9分)
證明如下:
MQ
QP
=
MO
OC
,∴OQ∥PC,又OQ?平面PAC,PC?平面PAC,
∴OQ∥平面PAC…(12分)
∵OQ∥PC,又OQ?平面PBC,PC?平面PBC,
∴OQ∥平面PBC.…(14分)
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查直線與平面平行的證明,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=1-an(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
log
1
3
an
,cn=
bnbn+1
n+1
+
n
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間D上,如果函數(shù)f(x)為增函數(shù),而函數(shù)
1
x
f(x)也是增函數(shù),則稱函數(shù)f(x)為區(qū)間D上的“和諧”函數(shù).已知函數(shù)f(x)=1-
1
x

(Ⅰ)判斷函數(shù)f(x)在區(qū)間[
1
4
9
4
]上是否為“和諧”函數(shù);
(Ⅱ)若P是函數(shù)f(x)圖象上的任一點(diǎn),求點(diǎn)P到直線x-2y=0的最短距離;
(Ⅲ)當(dāng)x∈[
1
4
,
9
4
]時(shí),不等式1-ax≤
1
x
≤1+2ax恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐S-ABCD的底面是菱形,SD⊥平面ABCD,點(diǎn)E是SD的中點(diǎn).
(Ⅰ)求證:SB∥平面EAC;
(Ⅱ)求證:平面SAC⊥平面SBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2ax2+2x-2-2a在[1,2]上有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公比為正的等比數(shù)列{an}的前n項(xiàng)和為Sn,且2a1+a2=a3,S3+2=a4
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log2an,數(shù)列{
1
b nb n+1
}的前n項(xiàng)和為Tn,求T2013的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知 AB=2
3
,AC=4,且△ABC的面積S=6,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x2-4x-2的定義域?yàn)閇0,m],值域?yàn)閇-6,-2],則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x),對(duì)任意實(shí)數(shù)x都有f(x+2)=f(x),當(dāng)x∈[0,1]時(shí),f(x)=x2,若在區(qū)間[-1,3]內(nèi),函數(shù)y=f(x)與函數(shù)y=kx+k的圖象恰有4個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案