分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,通過平移從而求出z的最大值和最小值.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+y得y=-x+z,即直線的截距最大,z也最大.
平移直線y=-x+z,即直線y=-x+z經(jīng)過點(diǎn)B時(shí),截距最大,此時(shí)z最大,
由$\left\{\begin{array}{l}{3x-y-6=0}\\{x-y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$,即B(4,6),
此時(shí)z=4+6=10.
經(jīng)過點(diǎn)(0,O)時(shí),截距最小,此時(shí)z最小,為z=0,
則z=x+y最大值與最小值的和為10,
故答案為:10.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{34}}{17}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{4\sqrt{7}}{7}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{π}{3}$ | B. | $\frac{2}{3}$ | C. | ($\frac{2}{3}$,0) | D. | (0,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | z<y<x | B. | z<x<y | C. | y<z<x | D. | x<z<y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com