設(shè)等差數(shù)列{}的前n項和為S,且S3=2S2+4,a5=36.
(1)求,Sn
(2)設(shè),,求Tn
(1) ;(2)

試題分析:(1) 由 ,由 
解方程組可求得,最后寫出該等差數(shù)列的通項公式與前 項和公式;
(2)根據(jù)(1)的結(jié)果得到,不難發(fā)現(xiàn)
按此將中等號右邊各項拆開,即可求和.
試題解析:
解:(1) 因為,所以
又因為,所以                          2分
解得                                 3分
                             4分
                            6分
(2)                        7分
所以                  9分
          10分
                            12分項和公式;2、特殊數(shù)列求和問題-----裂項求和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列是首項為,公差為的等差數(shù)列,其前項和為,且成等差數(shù)列.
(1)求數(shù)列的通項公式;
(2)記的前項和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個三角形數(shù)表按如下方式構(gòu)成(如圖:其中項數(shù)):第一行是以4為首項,4為公差的等差數(shù)列,從第二行起,每一個數(shù)是其肩上兩個數(shù)的和,例如:為數(shù)表中第行的第個數(shù).
求第2行和第3行的通項公式;
證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于)的表達式;
(3)若,,試求一個等比數(shù)列,使得,且對于任意的,均存在實數(shù)?,當時,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在公差不為0的等差數(shù)列中,,且成等比數(shù)列.
(1)求的通項公式;
(2)設(shè),試比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)是公差為的等差數(shù)列,,則(   )
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列滿足,且,設(shè)項和為,則使得取得最大值的序號的值為(   )
A.7B.8C.7或8D.8或9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列{an}中,a4=2,a7=-4.現(xiàn)從{an}的前10項中隨機取數(shù),每次取出一個數(shù),取后放回,連續(xù)抽取3次,假定每次取數(shù)互不影響,那么在這三次取數(shù)中,取出的數(shù)恰好為兩個正數(shù)和一個負數(shù)的概率為________(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)x,yz是實數(shù),9x,12y,15z成等比數(shù)列,且,,成等差數(shù)列,則的值是  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列,的前項和分別為,,若,則(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案