已知向量函數(shù).
(1)求函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(2)在銳角三角形ABC中,的對邊分別是,且滿足 的取值范圍.

(1) ;(2)

解析試題分析:(1)首先利用向量的坐標(biāo)運算和兩角和差公式求出函數(shù)的表達式,然后再根據(jù)三角函數(shù)的周期公式求出周期,由正弦函數(shù)的單調(diào)性可得,解出x,即得所求的單調(diào)減區(qū)間,.(2)利用正弦公式把已知等式轉(zhuǎn)化為角的三角函數(shù)式,再利用兩角和差公式,把和角展開,整理可得sinC=2cosAsinC,即1=2cosA.得,在根據(jù)三角形的內(nèi)角和定理和B是銳角,求出角B的取值范圍為,即,可得,所以=.
試題解析:解:(1) 3分
函數(shù)的最小正周期為T   4分
函數(shù)的單調(diào)遞減區(qū)間為,。 6分
(2)由 8分
因為B為銳角,故有,得 10分
所以 11分
所以 的取值范圍是. 12分
考點:1.正弦定理;2.兩角和差公式;3.正弦函數(shù)的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,函數(shù)的最大值為6.
(Ⅰ)求;
(Ⅱ)將函數(shù)的圖象向左平移個單位,再將所得圖象上各點的橫坐標(biāo)縮短為原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖象.求上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的部分圖像如圖所示.

(1)求函數(shù)的解析式;
(2)若,,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,計算:
(1);
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,角A、B、C的對邊分別為a、b、c,.
(I)求cosC;  (II)若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若的值域;
(Ⅱ)△ABC中,角A,B,C的對邊為a,b,c,若的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=x2+ax().
(1)若函數(shù)y=f(sinx+cosx)()的最大值為,求f(x)的最小值;
(2)當(dāng)a>2時,求證:f(sin2xlog2sin2x+cos2xlog2cos2x)1–a.其中x∈R,x¹kp且x¹kp(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,
(Ⅰ)求的值;
(Ⅱ)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中,內(nèi)角所對邊長分別為.
(I)求;
(II)若,求的面積.

查看答案和解析>>

同步練習(xí)冊答案