【題目】是指懸浮在空氣中的空氣動(dòng)力學(xué)當(dāng)量直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物.根據(jù)現(xiàn)行國家標(biāo)準(zhǔn),日均值在微克/立方米以下,空氣質(zhì)量為一級;在微克應(yīng)立方米微克立方米之間,空氣質(zhì)量為二級:在微克/立方米以上,空氣質(zhì)量為超標(biāo).從某市年全年每天的監(jiān)測數(shù)據(jù)中隨機(jī)地抽取天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如下表:
日均值 (微克/立方米) | ||||||
頻數(shù)(天) |
(1)從這天的日均值監(jiān)測數(shù)據(jù)中,隨機(jī)抽出天,求恰有天空氣質(zhì)量達(dá)到一級的概率;
(2)從這天的數(shù)據(jù)中任取天數(shù)據(jù),記表示抽到監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求的分布列.
【答案】(1);(2)分布列見解析.
【解析】
(1)由表格可知:這天的日均值監(jiān)測數(shù)據(jù)中,只有天達(dá)到一級,然后利用組合計(jì)數(shù)原理與古典概型的概率公式可計(jì)算出所求事件的概率;
(2)由題意可知,隨機(jī)變量的可能取值有、、、,然后利用超幾何分布即可得出隨機(jī)變量的分布列.
(1)由表格可知:這天的日均值監(jiān)測數(shù)據(jù)中,只有天達(dá)到一級.
隨機(jī)抽取天,恰有天空氣質(zhì)量達(dá)到一級的概率為;
(2)由題意可知,隨機(jī)變量的可能取值有、、、,
,,,.
因此,隨機(jī)變量的分布列如下表所示:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分
沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過連接管道全部流到下部容器所需要的時(shí)間稱為該沙漏的一個(gè)沙時(shí)。如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的(細(xì)管長度忽略不計(jì)).
(1)如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個(gè)沙時(shí)為多少秒(精確到1秒)?
(2)細(xì)沙全部漏入下部后,恰好堆成個(gè)一蓋住沙漏底部的圓錐形沙堆,求此錐形沙堆的高度(精確到0.1cm).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓:過點(diǎn),,為橢圓的左、右焦點(diǎn),離心率為,圓的直徑為.
(1)求橢圓及圓的方程;
(2)設(shè)直線與圓相切于第一象限內(nèi)的點(diǎn).
①若直線與橢圓有且只有一個(gè)公共點(diǎn),求點(diǎn)的坐標(biāo);
②若直線與橢圓交于,兩點(diǎn),且的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是曲線:上的動(dòng)點(diǎn),延長(是坐標(biāo)原點(diǎn))到,使得,點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若點(diǎn),分別是曲線的左、右焦點(diǎn),求的取值范圍;
(3)過點(diǎn)且不垂直軸的直線與曲線交于,兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為,,長軸端點(diǎn)為,,為橢圓中心,,斜率為的直線與橢圓交于不同的兩點(diǎn),這兩點(diǎn)在軸上的射影恰好是橢圓的兩個(gè)焦點(diǎn).
(1)求橢圓的方程;
(2)若拋物線上存在兩個(gè)點(diǎn),,橢圓上存在兩個(gè)點(diǎn),,滿足,,三點(diǎn)共線,,,三點(diǎn)共線,且,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,是邊長為1的等邊三角形,M為線段中點(diǎn),.
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點(diǎn)N,使得直線平面?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為,圓內(nèi)一條過點(diǎn)的動(dòng)弦(與軸不重合),過點(diǎn)作的平行線交于點(diǎn).
(1)求出點(diǎn)的軌跡方程;
(2)若過點(diǎn)的直線交的軌跡方程于不同兩點(diǎn),,為坐標(biāo)原點(diǎn),且,點(diǎn)為橢圓上一點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點(diǎn)為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)如圖,過定點(diǎn)的直線交橢圓于兩點(diǎn),連接并延長交于,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com