分析 分別求出關(guān)于p,q成立的a的范圍,從而求出P∨Q是真命題時(shí)的a的范圍即可.
解答 解:(Ⅰ)∵命題P:關(guān)于x的方程x2-(a+3)x+a+3=0有兩個(gè)不等正實(shí)根,
∴$\left\{\begin{array}{l}{{x}_{1}{+x}_{2}=a+3>0}\\{{x}_{1}{•x}_{2}=a+3>0}\\{△{=(a+3)}^{2}-4(a+3)>0}\end{array}\right.$,解得:a>1,
又∵命題Q:不等式ax2-(a+3)x-1<0對(duì)任意實(shí)數(shù)x均成立,
當(dāng)a=0時(shí):不等式變?yōu)椋?3x-1≤0,解得:x≥-$\frac{1}{3}$,顯然不符合題意,
當(dāng)a≠0時(shí):$\left\{\begin{array}{l}{a<0}\\{△{=(a+3)}^{2}+4a<0}\end{array}\right.$,解得:-9<a<-1,
若P∨Q是真命題,則實(shí)數(shù)a的范圍是:-9<a<-1或a>1.
點(diǎn)評(píng) 本題考查了復(fù)合命題的判斷,考查二次函數(shù)的性質(zhì),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{\sqrt{2}}{2}$] | B. | (1,$\sqrt{2}$) | C. | (0,1) | D. | (0,$\frac{\sqrt{2}}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α≠$\frac{π}{6}$,則tanα≠$\frac{\sqrt{3}}{3}$ | B. | 若α=$\frac{π}{6}$,則tanα≠$\frac{\sqrt{3}}{3}$ | ||
C. | 若tanα≠$\frac{\sqrt{3}}{3}$,則α≠$\frac{π}{6}$ | D. | 若tanα≠$\frac{\sqrt{3}}{3}$,則α=$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | -$\sqrt{2}$ | C. | $±\sqrt{2}$ | D. | 0或$\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com