“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
男性 女性 合計
反感 10
不反感 8
合計 30
已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(1)請將上面的列聯(lián)表補(bǔ)充完整(在答題卷上直接填寫結(jié)果,不需要寫求解過程);
(2)據(jù)此資料判斷是否有95%的把握認(rèn)為反感“中國式過馬路”與性別有關(guān)?
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計算題,概率與統(tǒng)計
分析:(1)根據(jù)在全部300人中隨機(jī)抽取1人抽到中國式過馬路的概率,做出中國式過馬路的人數(shù),進(jìn)而做出男生的人數(shù),填好表格;
(2)根據(jù)所給的公式,代入數(shù)據(jù)求出臨界值,把求得的結(jié)果同臨界值表進(jìn)行比較,看出有多大的把握說明反感“中國式過馬路”與性別是否有關(guān).
解答: 解:(1)
男性 女性 合計
反感 10 6 16
不反感 6 8 14
合計 16 14 30
…(6分)
(2)由已知數(shù)據(jù)得:Χ2=
30(10×8-6×6)2
16×14×16×14
≈1.158<3.841
,
所以,沒有95%的把握認(rèn)為反感“中國式過馬路”與性別無關(guān). …(12分)
點(diǎn)評:本題考查了獨(dú)立性檢驗(yàn),考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從某小組的2名女生和3名男生中任選2人去參加一項(xiàng)公益活動.
(1)求所選2人中恰有一名男生的概率;
(2)求所選2人中至少有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中裝大小和質(zhì)地相同的紅球、白球、黑球若干個,它們的數(shù)量比依次是2:1:1,現(xiàn)用分層抽樣的方法從中抽取一個樣本,抽出的紅球和黑球一共6個.
(Ⅰ)求樣本中紅球、白球、黑球的個數(shù);
(Ⅱ)若從樣本中任取2個球,求下列事件的概率;
(i)含有紅球;
(ii)恰有1個黑球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)V是圓O所在平面外一點(diǎn),D是AC的中點(diǎn),已知AB=2,VA=VB=VC=2.
(1)求證:OD∥平面VBC;
(2)求證:VO⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(t)=
t
1+t
,g(t)=
t
1-t
,求證:f(t)-g(t)=-2g(t2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)n≥5):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個數(shù)是其肩上兩個數(shù)的和,例如:f(2,1)=f(1,1)+f(1,2);f(i,j)為數(shù)表中第i行的第j個數(shù).
(1)求第2行和第3行的通項(xiàng)公式f(2,j)和f(3,j);
(2)證明:數(shù)表中除最后2行以外每一行的數(shù)都依次成等差數(shù)列;
(3)求f(i,1)關(guān)于i(i=1,2,…,n)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈(0,
π
2
)且sinx<x<tanx,求sin(cosx)與cos(sinx)大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
a
b
的夾角為60°,則|
a
+2
b
|等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,將若干個點(diǎn)擺成三角形圖案,每條邊(包括兩個端點(diǎn))有n(n>1,n∈N*)個點(diǎn),相應(yīng)的圖案中總的點(diǎn)數(shù)記為an,按上述規(guī)律,則a6=
 
,an=
 

查看答案和解析>>

同步練習(xí)冊答案