(2011•邢臺一模)如圖,某學(xué)校要用鮮花布置花圃中ABCDE五個不同區(qū)域,要求同一區(qū)域上用一種顏色的鮮花,相鄰區(qū)域使用不同顏色的鮮花,現(xiàn)有紅、黃、藍(lán)、白、紫五種不同顏色的鮮花可供任意選擇.
(I)求恰有兩個區(qū)域用紅色鮮花的概率;
(II)記ξ為花圃中用紅色鮮花布置的區(qū)域的個數(shù),求隨機變量ξ的分布列及其數(shù)學(xué)期望Eξ.
分析:(I)顏色相同的區(qū)域只可能是區(qū)域A、D和區(qū)域B、E,求出基本事件的總數(shù)和恰有兩個區(qū)域用紅色鮮花所包含的基本事件的個數(shù)即可求得.
(II)花圃中紅色鮮花區(qū)域的塊數(shù)可能為0,1,2.求出相應(yīng)的概率即可求得分布列及期望.
解答:解:(I)設(shè)M表示事件“恰有兩個區(qū)域用紅色鮮花”,如圖:
當(dāng)區(qū)域A、D同色時,共有5×4×3×1×3=180種;
當(dāng)區(qū)域A、D不同色時,共有5×4×3×2×2=240種;
因此,所有基本事件總數(shù)為:180+240=420種
又因為A、D為紅色時,共有4×3×3=36種;
B、E為紅色時,共有4×3×3=36種;
因此,事件M包含的基本事件有:36+36=72種
所以,恰有兩個區(qū)域用紅色鮮花的概率P(M)=
72
420
=
6
35

(II)由題意可得:隨機變量ξ的取值分別為0,1,2.
則當(dāng)ξ=0時,用黃、藍(lán)、白、橙四種顏色來涂色,
若A、D為同色時,共有4×3×2×1×2=48種;
若A、D為不同色時,共有4×3×2×1×1=24種;
即ξ=0所包含的基本事件有48+24=72種,
所以P(ξ=0)=
72
420
=
6
35

由第(I)可得P(ξ=2)=
6
35
;
所以P(ξ=1)=1-
6
35
-
6
35
=
23
35

從而隨機變量X的分布列為
                       ξ 0                        1 2
 P                       
6
35
                          
23
35
  
6
35
∴E(ξ)=0×
6
35
+1×
23
35
+2×
6
35
=1.
點評:解決此類問題的根據(jù)是熟練利用排列與組合的知識對區(qū)域進(jìn)行涂色,以及掌握等可能事件概率的計算公式與離散型隨機變量的期望與方差.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•邢臺一模)若集合A={x|x2-3x-4>0},B={x||x-3|>4}則A∩(?RB)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•邢臺一模)已知等差數(shù)列{an}的公差d≠0,且a1、a2、a4成等比數(shù)列,則
S3
S9
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•邢臺一模)設(shè)an(3-
x
)n
的展開式中x項的系數(shù)(n=2、3、4、…),則
lim
n→∞
(
32
a2
+
33
a3
+…+
3n
an
)
=
18
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•邢臺一模)某射擊游戲規(guī)定每擊中目標(biāo)一次得20分,游客甲每次擊中目標(biāo)的概率均為
2
3
,則他射5次得60分且恰有一次兩連中的概率為
16
81
16
81
.(以最簡分?jǐn)?shù)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•邢臺一模)已知有下列四個命題:
①函數(shù)f(x)=2x-x2在(-∞,0)是增函數(shù);
②若f(x)在R上恒有f(x+2)•f(x)=1,則4為f(x)的一個周期;
③函數(shù)y=2cosx2+sin2x的最小值為
2
+1

④對任意實數(shù)a、b、x、y,都有ax+by≤
a2+b2
x2+y2
;
則以上命題正確的是
①②④
①②④

查看答案和解析>>

同步練習(xí)冊答案