【答案】
分析:(1)欲求原函數(shù)的反函數(shù),即從原函數(shù)式中反解出x,后再進(jìn)行x,y互換,即得反函數(shù)的解析式.
(2)根據(jù)函數(shù)奇偶性的定義,利用對(duì)數(shù)的運(yùn)算性質(zhì),判斷f(-x)與f(x)的關(guān)系,即可得到函數(shù)f(x)的奇偶性.
解答:解:(1)令
,
解得
.
又10
x>0,
所以
,
則
,
故
.
(2)因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131024185504030924078/SYS201310241855040309240018_DA/5.png">
=
=
=-f
-1(x),
又其定義域?yàn)镽,關(guān)于原點(diǎn)對(duì)稱(chēng).
所以f
-1(x)為奇函數(shù).
點(diǎn)評(píng):本題考查反函數(shù)的求法、函數(shù)的奇偶性,是指數(shù)、對(duì)數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用,屬于基礎(chǔ)題目,要會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù).