【題目】已知函數(shù)f(x)=cos(x﹣ )﹣sin(x﹣ ). (Ⅰ)判斷函數(shù)f(x)的奇偶性,并給出證明;
(Ⅱ)若θ為第一象限角,且f(θ+ )= ,求cos(2θ+ )的值.
【答案】解:(Ⅰ)結(jié)論:函數(shù)f(x)為定義在R上的偶函數(shù).
證明:函數(shù)f(x)的定義域?yàn)镽,關(guān)于原點(diǎn)對(duì)稱,
f(x)=cos(x﹣ )﹣sin(x﹣ )=
f(﹣x)= .
因此,函數(shù)f(x)為定義在R上的偶函數(shù);
(Ⅱ)∵f(θ+ )= ,
∴ .
由于θ為第一象限角,故 ,
∴cos(2θ+ )=
= = .
【解析】(Ⅰ)結(jié)論:函數(shù)f(x)為定義在R上的偶函數(shù),由函數(shù)f(x)的定義域?yàn)镽,關(guān)于原點(diǎn)對(duì)稱,求出f(x)和f(﹣x)即可證得結(jié)論;(Ⅱ)由已知條件求出 ,再由θ為第一象限角,求出 ,然后利用三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)計(jì)算即可得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果函數(shù)f(x)=3sin(2x+φ)的圖象關(guān)于點(diǎn)( ,0)成中心對(duì)稱(|φ|< ),那么函數(shù)f(x)圖象的一條對(duì)稱軸是( )
A.x=﹣
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓 =1(a>b>0)上一點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為B,F(xiàn)為其右焦點(diǎn),若AF⊥BF,設(shè)∠ABF=α,且α∈[ , ],則該橢圓離心率的最大值為( )
A.
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】歐陽(yáng)修《賣(mài)油翁》中寫(xiě)到:(翁)乃取一葫蘆置于地,以錢(qián)覆其口,徐以杓酌油瀝之,自錢(qián)入孔入,而錢(qián)不濕,可見(jiàn)“行行出狀元”,賣(mài)油翁的技藝讓人嘆為觀止,若銅錢(qián)是直徑為2cm的圓,中間有邊長(zhǎng)為0.5cm的正方形孔,若你隨機(jī)向銅錢(qián)上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)三個(gè)點(diǎn)A(4,1),B(6,﹣3),C(﹣3,0),則圓C的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=4sinωxcos(ωx+ )+1(ω>0),其圖象上有兩點(diǎn)A(s,t),B(s+2π,t),其中﹣2<t<2,線段AB與函數(shù)圖象有五個(gè)交點(diǎn). (Ⅰ)求ω的值;
(Ⅱ)若函數(shù)f(x)在[x1 , x2]和[x3 , x4]上單調(diào)遞增,在[x2 , x3]上單調(diào)遞減,且滿足等式x4﹣x3=x2﹣x1= (x3﹣x2),求x1、x4所有可能取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合M={x|x2﹣1≤0},N={x| <2x+1<4,x∈Z},則M∩N=( )
A.{﹣1,0}
B.{1}
C.{﹣1,0,1}
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的離心率 ,且過(guò)點(diǎn)Q
(1)求橢圓C的方程.
(2)橢圓C長(zhǎng)軸兩端點(diǎn)分別為A,B,點(diǎn)P為橢圓上異于A,B的動(dòng)點(diǎn),定直線x=4與直線PA,PB分別交于M,N兩點(diǎn),直線PA,PB的斜率分別為k1 , k2①證明 ;
②若E(7,0),過(guò)E,M,N三點(diǎn)的圓是否過(guò)x軸上不同于點(diǎn)E的定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知∠ABC=45°,O在AB上,且OB=OC= AB,又PO⊥平面ABC,DA∥PO,DA=AO= PO.
(Ⅰ)求證:PD⊥平面COD;
(Ⅱ)求二面角B﹣DC﹣O的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com