已知函數(shù)
(1)若函數(shù)時(shí)有極值且在函數(shù)圖象上的點(diǎn)(0,1)處的切線與直線的解析式;
(2)當(dāng)取得極大值且加取得極小值時(shí),設(shè)點(diǎn)M()所在平面區(qū)域?yàn)镾,經(jīng)過原點(diǎn)的直線L將S分別面積比為1:3的兩部分求直線L的方程。
解:(1)由
函數(shù)時(shí)有極值,
又處的切線與直線平行,
(2)解法一:由取得極大值且在取得極小值,
即
令
故點(diǎn)M所在平面區(qū)域S為如圖△ABC,
易得
同時(shí)DE為△ABC的中位線,
∴所求一條直線L的中位線,x=0
另一種情況設(shè)不垂直于x軸的直線L也將S分為面積經(jīng)為1:3的兩部分,設(shè)直線L方程為,它與AC,BC分別交于F、G,則k>0,S四邊形DEGF=1
由得點(diǎn)F的橫坐標(biāo)為:
由得點(diǎn)G的橫坐標(biāo)為:
即得
解得:(舍去)
故這時(shí)直線方程為,
綜上,所求直線方程為:x=0或
(2)解法二:由取得極大值且在取得極小值,
即
令
故點(diǎn)M所在平面區(qū)域S為如圖△ABC,
易得
同時(shí)DE為△ABC的中位線,
∴所求一條直線L的方程為,x=0
另一種情況由于直線BO方程為:,
設(shè)BO與AC交于H,
由得直線L與AC交點(diǎn)為:
∴所求直線方程為:x=0或。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北衡水中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間。設(shè),試問函數(shù)在上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),
(1)若函數(shù)在[l,+∞]上是增函數(shù),求實(shí)數(shù)的取值范圍。
(2)若=一是的極值點(diǎn),求在[l,]上的最大值:
(3)在(2)的條件下,是否存在實(shí)數(shù)b,使得函數(shù)g()=b的圖像與函的圖像恰有3個(gè)交點(diǎn),若存在,求出實(shí)數(shù)b的取值范圍:若不存在,試說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年廣東省韶關(guān)市田家炳中學(xué)、乳源高級(jí)中學(xué)聯(lián)考高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年廣東省華南師大附中高三綜合測(cè)試數(shù)學(xué)試卷3(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com