若雙曲線
x2
m2
-
y2
n2
=1和橢圓
x2
a2
+
y2
b2
=1有相同的焦點(diǎn)F1、F2,M為兩曲線的交點(diǎn),則|MF1|•|MF2|=
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì),雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用橢圓、雙曲線的定義,即可得出結(jié)論.
解答: 解:由題意,不妨設(shè)M是第一象限內(nèi)的點(diǎn),則|MF1|-|MF2|=2m,|MF1|+|MF2|=2a,
∴|MF1|=m+a,|MF2|=m-a
∴|MF1|•|MF2|=m2-a2
故答案為:m2-a2
點(diǎn)評(píng):本題考查橢圓、雙曲線的定義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義y=log1+xf(x,y),x>0,y>0.
(1)比較f(1,3)與f(2,3)的大。
(2)若e<x<y,證明:f(x-1,y)>f(y-1,x);
(3)設(shè)g(x)=f(1,log2(x3+ax2+bx+1))的圖象為曲線C,曲線C在x0處的切線斜率為k,若x0∈(1,1-a),且存在實(shí)數(shù)b,使得k=-4,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)+m
(1)寫(xiě)出函數(shù)f(x)的最小正周期及對(duì)稱中心坐標(biāo);
(2)若x∈[-
π
6
,
π
3
]時(shí),函數(shù)f(x)的最小值為2,求函數(shù)f(x)的最大值,并指出此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)袋子中裝有大小相同的2個(gè)紅球和4個(gè)白球.
(Ⅰ)若每次不放回地從袋中任取一個(gè)球(共取兩次),求第一次取到白球且第二次取到紅球的概率;
(Ⅱ)若從袋中隨機(jī)取出3個(gè)球,求至少取出一個(gè)紅球的概率;
(Ⅲ)若從袋中隨機(jī)取出3個(gè)球,求取出紅球個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,若f(1)=0,f′(1)=0,但x=1不是函數(shù)f(x)的極值點(diǎn),則abc=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M={(x,y)|x2+y2=1,0<y≤1},N={(x,y)|y=x+b,b∈R},并且M∩N≠∅,那么b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),M,N分別為其短釉的兩個(gè)端點(diǎn),且四邊形MF1NF2的周長(zhǎng)為4設(shè)過(guò)F1的直線l與E相交于A,B兩點(diǎn),且|AB|=
4
3
,則|AF2|•|BF2|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x3-3x2-3在區(qū)間[0,3]上的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x,y滿足4x2+y2=1,則x+y的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案