【題目】如圖,某種螺帽是由一個(gè)半徑為2的半球體挖去一個(gè)正三棱錐構(gòu)成的幾何體,該正三棱錐的底面三角形內(nèi)接于半球底面大圓,頂點(diǎn)在半球面上,則被挖去的正三棱錐體積為_______.
【答案】
【解析】
設(shè)BC的中點(diǎn)為D,連結(jié)AD,過點(diǎn)P作PO平面ABC,角AD于點(diǎn)O,則A0=PO=R=2,AD=3,AB=BC=,由此能求出挖去的正三棱錐的體積,得到答案.
由題意,某中螺帽是由一個(gè)半徑為R=2的半球體挖去一個(gè)正三棱錐P-ABC構(gòu)成的幾何體,
該正三棱錐P-ABC的底面三角形ABC內(nèi)接于半球底面的大圓,頂點(diǎn)P在半球面上,
設(shè)BC的中點(diǎn)為D,連結(jié)AD,過點(diǎn)P作PO平面ABC,交AD于點(diǎn)O,
則AO=PO=R=2,AD=3,AB=BC=,
所以,
所以挖去的正三棱錐的體積為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,國內(nèi)很多評價(jià)機(jī)構(gòu)經(jīng)過反復(fù)調(diào)研論證,研制出“增值評價(jià)”方式。下面實(shí)例是某市對“增值評價(jià)”的簡單應(yīng)用,該市教育評價(jià)部門對本市所高中按照分層抽樣的方式抽出所(其中,“重點(diǎn)高中”所分別記為,“普通高中”所分別記為),進(jìn)行跟蹤統(tǒng)計(jì)分析,將所高中新生進(jìn)行了統(tǒng)的入學(xué)測試高考后,該市教育評價(jià)部門將人學(xué)測試成績與高考成績的各校平均總分繪制成了雷達(dá)圖.點(diǎn)表示學(xué)校入學(xué)測試平均總分大約分,點(diǎn)表示學(xué)校高考平均總分大約分,則下列敘述不正確的是( )
A.各校人學(xué)統(tǒng)一測試的成績都在分以上
B.高考平均總分超過分的學(xué)校有所
C.學(xué)校成績出現(xiàn)負(fù)增幅現(xiàn)象
D.“普通高中”學(xué)生成績上升比較明顯
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市春節(jié)大酬賓,購物滿100元可參加一次抽獎(jiǎng)活動(dòng),規(guī)則如下:顧客將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器正上方的人口處,小球在自由落下的過程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,顧客相應(yīng)獲得袋子里的獎(jiǎng)品.已知小球每次遇到黑色障礙物時(shí),向左向右下落的概率都為.若活動(dòng)當(dāng)天小明在該超市購物消費(fèi)108元,按照活動(dòng)規(guī)則,他可參加一次抽獎(jiǎng),則小明獲得A袋中的獎(jiǎng)品的概率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)購平臺(tái)為了解某市居民在該平臺(tái)的消費(fèi)情況,從該市使用其平臺(tái)且每周平均消費(fèi)額超過100元的人員中隨機(jī)抽取了100名,并繪制如圖所示頻率分布直方圖,已知中間三組的人數(shù)可構(gòu)成等差數(shù)列.
(1)求的值;
(2)分析人員對100名調(diào)查對象的性別進(jìn)行統(tǒng)計(jì)發(fā)現(xiàn),消費(fèi)金額不低于300元的男性有20人,低于300元的男性有25人,根據(jù)統(tǒng)計(jì)數(shù)據(jù)完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為消費(fèi)金額與性別有關(guān)?
(3)分析人員對抽取對象每周的消費(fèi)金額與年齡進(jìn)一步分析,發(fā)現(xiàn)他們線性相關(guān),得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為25歲的年輕人每周的平均消費(fèi)金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替)
列聯(lián)表
男性 | 女性 | 合計(jì) | |
消費(fèi)金額 | |||
消費(fèi)金額 | |||
合計(jì) |
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長途車站P與地鐵站O的距離為千米,從地鐵站O出發(fā)有兩條道路l1,l2,經(jīng)測量,l1,l2的夾角為45°,OP與l1的夾角滿足tan=(其中0<θ<),現(xiàn)要經(jīng)過P修條直路分別與道路l1,l2交匯于A,B兩點(diǎn),并在A,B處設(shè)立公共自行車停放點(diǎn).
(1)已知修建道路PA,PB的單位造價(jià)分別為2m元/千米和m元/千米,若兩段道路的總造價(jià)相等,求此時(shí)點(diǎn)A,B之間的距離;
(2)考慮環(huán)境因素,需要對OA,OB段道路進(jìn)行翻修,OA,OB段的翻修單價(jià)分別為n元/千米和n元/千米,要使兩段道路的翻修總價(jià)最少,試確定A,B點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a,bR).
(1)當(dāng)a=b=1時(shí),求的單調(diào)增區(qū)間;
(2)當(dāng)a≠0時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的值;
(3)當(dāng)a=0時(shí),若的解集為(m,n),且(m,n)中有且僅有一個(gè)整數(shù),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)F(1,0),O為坐標(biāo)原點(diǎn),A,B是拋物線C上異于 O的兩點(diǎn).
(1)求拋物線C的方程;
(2)若直線AB過點(diǎn)(8,0),求證:直線OA,OB的斜率之積為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且其離心率為,過坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別相交于,兩點(diǎn).
(1)求橢圓的方程;
(2)是否存在圓心在原點(diǎn)的定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com