分析 先根據(jù)兩角和差的正切公式,求出tanθ=-$\frac{1}{2}$,繼而得到2sinθ=-cosθ,再根據(jù)sin2θ+cos2θ=1,求出sinθ=$\frac{\sqrt{5}}{5}$,cosθ=-$\frac{2\sqrt{5}}{5}$,問題得以解決.
解答 解:tan(θ+$\frac{π}{4}$)=$\frac{tanθ+tan\frac{π}{4}}{1-tanθtan\frac{π}{4}}$=$\frac{1+tanθ}{1-tanθ}$=$\frac{1}{3}$,
解得tanθ=-$\frac{1}{2}$,
∴tanθ=$\frac{sinθ}{cosθ}$=-$\frac{1}{2}$,
∴2sinθ=-cosθ,
∵sin2θ+cos2θ=5sin2θ=1,θ為第二象限角
∴sinθ=$\frac{\sqrt{5}}{5}$,cosθ=-$\frac{2\sqrt{5}}{5}$,
∴sinθ+cosθ=-$\frac{\sqrt{5}}{5}$.
故答案為:-$\frac{1}{2}$,-$\frac{\sqrt{5}}{5}$.
點評 本題考查了兩角和差的正切公式,正弦和余弦的關系,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com