已知函數(shù)f(x)=|2x+4|+|x-3|-9.
(1)畫出函數(shù)y=f(x)的圖象;
(2)若當(dāng)x∈[-4,3]時不等式f(x)<2a+1恒成立.
考點:絕對值不等式的解法,函數(shù)圖象的作法
專題:不等式的解法及應(yīng)用
分析:(1)先化簡函數(shù)的解析式,即可畫出函數(shù)的圖象.
(2)由題意可得f(x)max<2a+1,數(shù)形結(jié)合求得f(x)max=2,從而求得a的范圍.
解答: 解:(1)函數(shù)f(x)=|2x+4|+|x-3|-9=
-3x-10,x<-3
x-2,-3≤x≤3
3x-8,x>3
,
如圖所示:
(2)當(dāng)x∈[-4,3]時不等式f(x)<2a+1恒成立,可得f(x)max<2a+1.
當(dāng)x=-4時,f(x)=2;當(dāng)x=3時,f(x)=1;
再結(jié)合圖象可可得f(x)max<2a+1,求得a>
1
2
點評:本題主要考查帶有絕對值的函數(shù),函數(shù)的恒成立問題,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
36-m2
-
y2
m2
=1(0<m<3)的焦距為( 。
A、6
B、12
C、36
D、2
36-2m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:log 
2
2
2
-log23•log32=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論中正確的是( 。
A、若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于0
B、在某項測量中,測量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ位于區(qū)域(0,1)的概率為0.4,則ξ位于區(qū)域(1,+∞)內(nèi)的概率為0.6
C、從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每4'分鐘從中抽取一件產(chǎn)品進行某項指標(biāo)檢測,這樣的抽樣是分層抽樣
D、利用隨機變量Χ2來判斷“兩個獨立事件X,Y的關(guān)系”時,算出的Χ2值越大,判斷“X與Y有關(guān)”的把握就越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:a1=1,an+1-an=n,求{an}通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=x3(x-a),求函數(shù)f(x)在區(qū)間[1,2]上的最小值h(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+bx+c,若函數(shù)y=|f(x)|在區(qū)間[-1,1]上的最大值是M,求證:M≥
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)、g(x)的圖象在區(qū)間[a,b]上連續(xù)不斷,且f′(x)•g(x)>f(x)•g′(x),g(x)>0,則對任意的x∈(a,b)都有( 。
A、f(x)•g(x)>f(a)•g(b)
B、f(x)•g(a)>f(a)•g(x)
C、f(x)•g(x)>f(b)•g(b)
D、f(x)•g(b)>f(b)•g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校開展校園文化活動,其中一項是背誦古詩100首,在該項進行一段時間后,隨機抽取40人,統(tǒng)計調(diào)查了他們會背古詩的首數(shù),得到的數(shù)據(jù)如下:
20 21 22 23 24 24 25 26 26 27 28 29 29 29 30 30 30 31 31 31
32 32 33 34 35 35 36 36 37 38 38 38 40 40 41 42 42 43 46 48
(Ⅰ)根據(jù)調(diào)查數(shù)據(jù)補全如下分組為[20,25),[25,30),…,[40,45),[45,50]的頻率直方圖;
(Ⅱ)從會背的古詩首數(shù)在區(qū)間[30,40)內(nèi)的同學(xué)中隨機抽取1人,求他會背的古詩首數(shù)恰在區(qū)間[30,35)內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案