已知向量,,若且m,n∈R*,則m+n的最小值為( )
A.
B.
C.
D.
【答案】分析:由題意可得 =m+n+mn=1≤(m+n)+,解此不等式求出m+n的最小值.
解答:解:由題意可得 =m+n+mn=1≤(m+n)+,當且僅當m=n時,等號成立.
即 (m+n)2+4(m+n)-4≥0,解得-2-2≥m+n(舍去),或 m+n≥-2+2,
故選D.
點評:本題主要考查兩個向量數(shù)量積公式的應(yīng)用,基本不等式的應(yīng)用,注意基本不等式的使用條件,并注意檢驗等號成立的條件.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標與參數(shù)方程
在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點M的極坐標為(4
2
,
π
4
)
,曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標方程;
(Ⅱ)求點M到曲線C上的點的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實數(shù)a,b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•福建模擬)(1)選修4-2:矩陣與變換
已知向量
1
-1
在矩陣M=
1m
01
變換下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲線y2-x+y=0在矩陣M-1對應(yīng)的線性變換作用下得到的曲線方程.
(2)選修4-4:極坐標與參數(shù)方程
在直角坐標平面內(nèi),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知點M的極坐標為(4
2
,
π
4
),曲線C的參數(shù)方程為
x=1+
2
cosα
y=
2
sinα
(α為參數(shù)).
(Ⅰ)求直線OM的直角坐標方程;
(Ⅱ)求點M到曲線C上的點的距離的最小值.
(3)選修4-5:不等式選講
設(shè)實數(shù)a、b滿足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求x的取值范圍;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:廣西柳鐵一中2012屆高三第三次月考數(shù)學文科試題 題型:013

已知向量,,若且m,n∈R*,則m+n的最小值為

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知向量數(shù)學公式,數(shù)學公式,若數(shù)學公式且m,n∈R*,則m+n的最小值為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式

查看答案和解析>>

同步練習冊答案